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ABSTRACT

A shifted non-negative matrix factorisation algorithm is de-
rived, which offers advantages over previous matrix factori-
sation techniques for the purposes of single channel source
separation. It represents a sound source as translations of
a single frequency basis function. These translations ap-
proximately correspond to notes played by an instrument.
Results are presented for a set of synthetic data, and on a
single channel recording of piano and clarinet. Though the
system is aimed at musical recordings, the technique can be
applied to any data which contains shifted versions of an un-
derlying factor, and so the algorithm could possibly be used
in other applications such as image processing.

1. INTRODUCTION

In recent years, a number of systems have been proposed
that attempt matrix factorisation into sets of outer product
basis functions. These include Non-negative Sparse Coding
(NNSC) [5] and Non-negative Matrix Factorisation (NNMF)
[6]. These systems have found use in single channel sound
source separation [7, 8]. Further, both NNSC and NNMF
have been used to attempt the transcription of polyphonic
music of a single instrument [9, 10].

All these methods attempt to factorise a data matrix X
into matrix factors A and S such that X ~ AS, where X
is an n X m matrix, A is an n X r matrix, and S is an r
X m matrix, with r smaller than n or m. This results in a
compressed version of the original data matrix. The main
difference between the systems lies in how the factorisation
into outer products is achieved.

The Independent Subspace Analysis (ISA) algorithm pro-
posed by Casey uses Principal Component Analysis (PCA)
for dimensional reduction, followed by Independent Com-
ponent Analysis (ICA) to achieve independence of the ba-
sis functions. NNSC uses a cost function that balances the
reconstruction of the data matrix with the sparsity of the
recovered components, along with additional constraints to
ensure the non-negativity of the sources. NNMF uses a gen-
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eralised Kullback-Liebler divergence between the spectro-
gram and the reconstruction of the spectrogram, and uses
multiplicative updates to ensure the basis functions are non-
negative.

In the context of single channel sound source separa-
tion, the single channel is typically transformed into a time-
frequency representation such as a magnitude or power spec-
trogram. When factorisation takes place on the spectro-
gram, the columns of A contain frequency basis functions,
and S contains a set of amplitude envelopes associated with
the frequency basis functions. Ensuring that the factori-
sation is non-negative is particularly useful when decom-
posing a spectrogram, as a spectrogram contains only non-
negative data, and so any decomposition which reflects this
is more likely to give meaningful results. As a result, NNMF
and NNSC based techniques are currently finding favour
over ISA, which was the first of these decomposition meth-
ods used for single channel source separation.

A problem with using the above methods for single chan-
nel sound source separation is that the factorisation is linear.
In practice, this means that each frequency basis function
can only describe a single note, or group of notes such as a
chord. As aresult, these methods were particularly suited to
sounds which do not change in pitch from occurrence to oc-
currence, such as drum sounds, and so these methods have
found use in the automatic transcription of percussion in-
struments [1, 2, 3]. As most musical signals involve changes
in pitch, this restriction means that some form of grouping
must be carried out after using the above methods to obtain
separated sources which change in pitch. Grouping methods
have been proposed in [7] and [8]. Despite the existence of
these grouping methods,this has been a serious limitation on
the usefulness of these algorithms to-date.

It can therefore be seen that an extended model is needed
to deal with the situation where various notes from the same
instrument occur over the course of the mixture spectro-
gram. Previous work attempting to do this includes the non-
linear ISA technique proposed by Vincent et al [11]. The
remainder of this paper presents an alternative method for
attempting to solve this problem which does not involve the



learning of source priors before attempting separation.

2. SHIFTED NON-NEGATIVE MATRIX
FACTORISATION
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Fig. 1. Spectra of two notes played by French Horn

A potential way of overcoming the problem of dealing
with multiple notes belonging to a single source is to assume
that the notes belonging to a single source consist of trans-
lated versions of a single frequency basis function. This
single frequency basis function is then taken to represent
the typical frequency spectrum of any note played on the
instrument in question. This is a simplified approximation
of the real situation, where the frequency spectrum of the
note does vary with pitch. Nevertheless, this assumption
range. Indeed, a version of this assumption is used in com-
mercial music samplers and synthesisers, where a recorded
note of a given pitch is used to generate other notes in prox-
imity to the original note. The use of this assumption also
places a further restriction on the type of spectrogram being
analysed, namely that the frequency resolution of the spec-
trogram must be logarithmic in scale.

A suitable method of obtaining such a frequency resolu-
tion would be the use of the Constant Q Transform (CQT)
[4]. If the frequency resolution of the transform is set so
that the center frequencies of each band are 2'/'2 apart,
then the spacing between frequencies will match that of the
even-tempered tuning system used in western popular mu-
sic. In this case, translating a frequency basis function of
a note up or down by one position is equivalent to a pitch
change of one semi-tone in the even-tempered scale. Figure
1 shows two notes played by a french horn. It can be seen

that the frequency spectra of the two notes are quite simi-
lar, and hence either of the notes could be approximated by
a translation of the other note. Further, it is assumed that
no important information is contained in the extremities of
the frequency basis function. It can be seen that assump-
tion is valid for the frequency spectra in Figure 1, and can
be ensured by setting suitable limits on the maximum and
minimum frequencies in the CQT.

The following conventions are used in the remainder of
this paper. Indexing of elements within a matrix or tensor,
usually denoted by X; ; is here denoted by X(4, j). Tensors
are denoted by calligraphic uppercase letters, eg. 7, and
contracted product multiplication of two tensors is defined
as follows. If W is a tensor of size [7 X --- X Iy X J1 X
--- X Jyrand Yis atensor of size [1 X -+ X Iy X K7 X
-+ X Kp then contracted product multiplication of the two
tensors along the first V modes is given by:
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In this notation, the modes to be multiplied are specified in
the subscripts that follow the angle brackets. These are the
conventions adapted by Bader and Kolda in [12].

To translate a given n X 1 vector, an n X n translation
matrix can be used. Such a translation matrix can be gener-
ated using the identity matrix and rearranging the columns.
For example, to achieve a shift up of one, the translation
matrix would be obtained from I(:,[n,1 : n — 1]) where I
denotes the identity matrix, and where the ordering of the
columns is contained in the square brackets. An example of
this is given below:
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For k possible translations, these translation matrices can be
grouped into a translation tensor 7 of size n x k X n.

For r sources the frequency basis functions are con-
tained in an n x r tensor denoted A. The translated versions
of these basis functions are then obtained from:

P - <T.A>{3,1}

where P is a tensor of size n x k x r
Then a spectrogram X of size » by m can be decom-
posed as follows:

X =~ <P5>{2:3,1:2}



where S is a tensor of size k¥ X r X m containing the am-
plitude envelopes associated with each translation of each
source.

The generalised Kullback-Liebler divergence from NNMF
is used as a cost function. This divergence is given by:
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In the case of the decomposition described above, this di-
vergence becomes:

D(X|(PS)2:3,1:23) =

LZ/ (X(Z,])IOQ% - X(i,5)+ <P8>{2:3$1:2}>

Using this divergence the following multiplicative update
equations can be derived.

S=38.%(PD)11y./(PO) {11y

where .x denotes elementwise multiplication and ./ denotes
elementwise division, and where O is an all ones tensor of
size n by m. D is defined as:

D =X./(PS){2:3,1:2}
The update equation for A is then given by:

A=A« WS) (11,311,313 -/(QS) {1.31.10.31

where W = (TD)(1,1}, and @ = (Z7O)yy,13 . Once the
initial estimates of A and S are set to positive values, the
multiplicative updates ensure that the factorisation is non-
negative. Although the convergence proofs given in [6] do
not apply, it has been found that, in practice, the algorithm
converges reliably.

3. RESULTS

The above algorithm was implemented in Matlab using the
Matlab Tensor Classes written by Bader and Korda, avail-
able at [13]. Initially the algorithm was tested on synthetic
data consisting of a single harmonic spectrum shifted up
and down, and multiplied by a set of binary amplitude en-
velopes. In this case, the data fits the assumptions inherent
in the algorithm perfectly and so the algorithm should be
able to recover the underlying harmonic spectrum, subject
to shifting and scaling factors. Both A and S were randomly
intialised to positive values, and the number of sources set
to 1. The algorithm converged after 50 iterations. Figure
2 shows the data set used to test the algorithm, while Fig-
ure 3 shows the normalised harmonic spectra of the input,
shown as a solid line, and the harmonic spectrum recov-
ered using the algorithm, shown as a dotted line. It can be
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Fig. 2. Synthetic Test Data generated using a single shifted
harmonic spectrum

seen that the algorithm has indeed recovered the underly-
ing harmonic spectrum used to generate the test set. This
demonstrates that the algorithm works as designed.

Further to this, the algorithm was tested using a single
channel signal generated from sampled notes of both piano
and clarinet. Four samples used per octave in order to en-
sure that the same sample was not used for all notes played,
thus making the test more realistic. The signal was trans-
formed to a time-frequency representation using the Con-
stant Q Transform [4] and a magnitude spectrogram ob-
tained. Both .4 and S were randomly initialised to positive
values and the number of sources r set to two. The number
of allowable translations, k, was set to 15. The algorithm
converged after 300 iterations.

Figure 4 shows the spectrogram obtained from the mix-
ture signal of clarinet and piano. The piano melody can
be seen clearly by following the lowest harmonics visible
in the spectrogram, while the clarinet melody can be fol-
lowed from the straighter harmonics visible above those of
the lowest piano harmonics. Figure 5 shows the separated
piano spectrogram obtained from the shifted NNMF algo-
rithm described above, while Figure 6 shows the separated
clarinet spectrogram.

It can be seen that the sources have been separated quite
well, though there are still errors in the separation, with
some notes from the clarinet showing up in the piano spec-
trogram and vice-versa. The largest error occurs where the
third piano note has in effect been taken as a clarinet note.
Inspection of the input signal revealed that this was because
the clarinet note and piano note playing simultaneously were
an octave apart, and so all the harmonics of the piano note
overlap with those of the clarinet. Further, it is the only time
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Fig. 3. Underlying harmonic spectrum of test data (solid
line), and harmonic spectrum recovered using Shifted
NNMF (dotted line)

these two notes occur in the signal, and so the algorithm
does not have enough information to separate the two notes
correctly. If another instance of either note was present, the
algorithm would then have had sufficient information for
separation to occur. This shows that the more instances of
a note from a given instrument are present, the more likely
the correct separation is to occur. Nevertheless, separation
of the two sources has occurred using the shifted NNMF
algorithm, demonstrating it’s potential use as a means of
single channel source separation. It also demonstrates that
the assumption that an instrument or source can be viewed
as translations of a single frequency basis function hold rea-
sonably well over a limited pitch range.

The algorithm shows sensitivity to the choice of the num-
ber of allowable translations k. Too small a number results
in the sources being amalgamated into a single source, while
too large a number results in the recovery of an S which
does not contain information which is not recognisable as
being associated with a given source. Nonetheless, the re-
sults obtained with the algorithm are encouraging.

4. CONCLUSIONS

Having discussed the limitations of previous matrix factori-
sation techniques with regards to single channel sound source
separation, it was proposed that to over come limitations
in these techniques by assuming that a sound source or in-
strument could be represented as translations of a single
frequency basis function. An algorithm based on NNMF
which allowed for such translations was then derived. The
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Fig. 4. Spectrogram of clarinet and piano signal

algorithm was successfully tested on synthetic data which
met the underlying assumptions of the data. It was further
tested on a single channel recording of clarinet and piano
generated from sampled notes of each instrument. Separa-
tion of the two sources was demonstrated, illustrating the
utility of the approach. While the algorithm was derived
with polyphonic music in mind, the algorithm could poten-
tially have use when in any areas where the data can be rep-
resented as shifted versions of an underlying factor. As a
result, the algorithm also has potential applications in areas
such as image processing.
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