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playing can be assessed by a computer, are presented in this paper.  
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I   INTRODUCTION 
Steps towards the development of a violin 
teaching aid which is based on violin pedagogy, 
sound analysis, and comparison of beginner and 
good player recordings was presented in [1]. The 
relationship between timbre and playing technique 
has been explored and five main beginner faults 
have been determined. Briefly, the tone fault 
categories are onsets, offsets, amplitude, 
unevenness and asymmetry about the x-axis 
which may contain undesirable sounds such as 
squeaks, crunches, skating and nervousness. 
Features which best describe these faults for 
classification purposes are considered in this 
paper. This involves getting a suitable set of 
features which can describe quantitatively the 
qualitative and subjective nature of violin playing 
quality. Many features, although very useful in 
determining one instrument from another [2, 3], 
are not appropriate for catching the subtleties due 
to playing technique or for use within a timbre 
space. Results have been obtained clearly showing 
that it is possible for a computer to differentiate 
between recordings of a beginner note and a good 
player legato note played on a violin [4]. Further 
signal processing methods will be considered in 
this paper to find features which best describe 
violin sound within its timbre space.  

II   EXISTING RESEARCH 
Current advances in signal processing and 
interactive computing have enabled the 
development of much more sophisticated systems 
and learning aids.   Hämäläinen et al. developed a 
successful real-time singing aid in [5], which 
describes the use of pitch-based control of a game 

character by the user’s voice. However a direct 
transfer of this approach into a violin, or another 
instrument teaching aid wouldn’t be as successful. 
A singer is physically ‘free’ to concentrate on a 
screen and able to react to it. Instrumentalists, 
especially beginners, need to be looking at what 
they are doing and looking elsewhere, such as at a 
screen, will disturb their position. For this reason, 
a system which offers feedback after the user has 
played their short piece would be much more 
effective. This differs greatly in approach to the 
Music Minus One [6] CDs which offer a variety 
of recordings to which the user plays the solo part. 
There seems to be no work conducted on poor 
violin technique, its effect on sound or on the 
more general area of the violin timbre space 
affected by a player using signal processing 
techniques. Some, but not much work has been 
conducted on poor singing with the information 
retrieval domain [7, 8].  

III   DATA TEST SET 
The data test set consists of two same sized 
groups, one with beginner notes and the other 
with good player legato notes. The files all 
contain one note and are of varying lengths and 
pitches. There are eighty-eight beginner note files 
and eighty-eight legato good note files.  A player 
will never play two notes exactly the same 
although they may be perceived by a listener as 
being the same. A beginner does not have the 
control necessary to achieve this level of accuracy 
in playing. Hence, it is more appropriate to not 
dependent on ether note length or pitch. The 
ultimate aim is to find features for fault detection 
within the violin timbre space, which can be 
applied to the note independent of its length or 
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pitch. The data files were made in a recording 
studio using two microphones, one directional, the 
other, omni directional. The tracks were recorded 
onto DAT, mixed and saved as monophonic wav 
files. It should also be noted that the recordings 
were all made in the same studio, using the same 
microphones, and set up as well as the same violin 
and bow. 

IV   VIOLIN TECHNIQUE AND SOUND 
The first bow stroke a beginner must learn is 
called legato, which literally means ‘tied together’ 
or smoothly connected [7]. Mastering this ensures 
enough bow control upon which the student can 
develop other bow strokes, such as staccato. 
Initially the aim would be based on developing a 
student’s legato bow stroke. Since the style or 
type of bow stroke used effects the readings 
obtained, only good player legato notes will be 
used and the beginner notes will be compared to 
these.  

V   FEATURE EXTRACTION 
Features can be considered as descriptors and 
standard features for extracting information 
pertaining to musical signals include pitch, 
spectral centroid, zero-crossing rates, mean 
acoustic energy, onset, offset times to name but a 
few. In [3], many features have been determined. 
Many features, although very useful in 
determining one instrument from another, are not 
appropriate for understanding the discrepancies 
due to playing technique within an instrument’s 
timbre space. Pitch related or dependent features 
are of limited use within the context of bowing. 
Through visual inspection of the good player 
waveforms compared to ones produced by the 
beginner player, the latter files were much more 
asymmetric. No real violin sound produces 
perfectly symmetric waveforms. This is due to the 
physics of the instrument and the large number of 
variables which effect the waveform. This 
asymmetry led to investigating skew readings for 
these files. Unfortunately, these readings did not 
provide any significant information but led to the 
other orders (up to the fourth order) of statistics 
being investigated [4]. From the first four orders 
of statistics, the mean proved to be the most 
informative and applicable for building a 
classifier [4]. In this paper, features obtained 
through applying the following procedures have 
been considered and are discussed in their 
respective subsections. They are the constant Q 
transform (CQT), power spectrum density (PSD) 
estimates, spectral centroid, spectral flatness 
measure (SFM), spectral flux, and features 
obtained through cepstral analysis.  

a) Constant Q Transform 

The CQT, as introduced by Brown in [10], yields 
a log-scaled time-frequency representation of the 
signal. It differs from the DFT in that the ratio 
between centre frequency and resolution remains 
constant making it suitable for the representation 
of musical signals as it improves time resolution 
as frequency increases.  

b) Spectral Centroid 

The spectral centroid is the ‘centre of gravity’ and 
is defined by the ratio of the sums of the 
magnitudes multiplied by the relevant frequencies 
all divided by the sum of magnitudes. It represents 
the ‘brightness’ of a signal and is calculated from 
the equation below [11]: 
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c) Power Spectral Density 

The PSD describes the power distribution of the 
signal with respect to frequency [12]. Many 
methods exist for obtaining a PSD estimate and 
depending on the application, some are better 
suited than others. The periodogram is the 
simplest nonparametric method from which the 
PSD can be calculated. It is obtained directly from 
the signal itself by taking the FT of the 
autocorrelation of the windowed signal. However, 
it is not the most accurate method due to bias 
effects. This can be improved by selecting an 
appropriate windowing function. In this situation 
Welch’s method, which is a nonparametric 
method, uses a Hamming window and provides a 
sufficiently detailed PSD. The straightforward 
periodogram uses a rectangular window.  

d) Spectral Flatness Measure 

The SFM is calculated from the power 
distribution via Welch’s method and is defined as 
the PSD’s geometric mean divided by its 
arithmetic mean [13].  
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e) Spectral Flux 

Spectral flux is a measure which represents the 
change in power between adjacent windows.  It is 
obtained through the autocovariance of Welch’s 
PSD of a windowed signal.  

f) Cepstral Analysis 

Cepstral analysis is a non-linear signalling 
technique often used in speech processing [12]. 
The real and Mel cepstra are considered in this 
paper. The real cepstrum is the inverse spectrum 
of the log of the spectrum. Whereas in the Mel 
cepstrum, which is a perceptually based spectrum, 
the data is converted into the Mel scale before the 
discrete cosine transform is carried out. Stages 
involved in obtaining the cepstra are shown in 
figure 1 below. 

 

 
Figure 1: Steps involved in obtaining the real 
and Mel cepstra. 

 

From these cepstra, the coefficients are obtained 
and the log energy of the signals is evaluated. The 
log energy is calculated from taking summing the 
natural logarithm of the magnitude of the FT of 
the signal and then by dividing this by the signal’s 
length [14].  
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VI   RESULTS 

a) Constant Q Transform 

As can be seen in figure 2, due to the frequency 
resolution, the CQT domain is effective for 

visualizing and exploiting information about the 
harmonic content of a note. 
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Figure 2: Harmonics visible via the CQT. 

 
Based on the proportional strength of the strongest 
harmonic relative to the overall strength of all the 
harmonics in the signal, figure 3 clearly shows a 
significant difference between the beginner notes 
and the good player legato ones. This supports 
what professional stringed instrument players 
would say about beginners.  
 
The proportional strength of harmonics has been 
calculated from the CQT by summing each 
frequency bin, taking the maximum and then 
dividing by the total. 
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Figure 3: the proportional strength of 
harmonics obtained from CQT information. 

 

b) Spectral Centroid 

As a measure, it is more useful as a windowed 
measure from which the waveform can be split 
into regions (attack-steady-sate-decay). Tis can be 
seen in figure 4. However the spectral flatness 
measure (§VI.d) does this with much greater 
accuracy. The spectral centroid is better applied to 
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instrument identification tasks rather than within a 
timbre. As calculated, it is not sensitive enough a 
measure to be of use as a feature within the violin 
timbre space. 
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Figure 4: Waveform (top) and its moving 
spectral centroid (bottom). 

 

c) PSD 

The PSD from Welch’s method is shown in the 
figure 5 below. A 1024 point Hamming window 
has been used with 50% overlap. Most of the 
energy is found at the fundamental frequency. 
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Figure 5: PSD via Welch’s method. 

 

d) Spectral Flatness Measure 

Readings obtained from the SFM indicate how 
noisy or how close to a pure sinusoid a signal is. 
As the level approaches 1, the signal is closer to 
white noise. The closer to zero the reading, the 
closer the signal is to a pure sinusoid. This has 
proven to be very useful for sectioning real violin 

sounds. Figure 6 below compares a good legato 
note (top) with a beginner note (bottom).    
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Figure 6: A moving SFM for a good legato note 
(top) and for a reasonable sounding beginner 
note (bottom). 

 
The attack-steady-state-decay regions within the 
file become clear in the good note and are more 
approximate for the beginner note. These images 
hold much information about the bowing. The 
steepest changes occur at the beginning and ends 
of the note and this pattern is repeated throughout 
the good legato note files and reasonable sounding 
beginner files start approaching this shape too.  
The starts and ends of notes require more bow 
control than the middle section. These are also the 
regions where beginners typically ‘crunch’ due to 
lack of bow control. The pressure applied to the 
string via the bow is not kept the same 
throughout. The most pressure changes occur 
when the player in closest to either the tip (top of 
bow) or towards the heel (bottom of bow) and this 
is reflected in the SFM readings. The steady-state 
section of a good legato note, where pressure is 
applied more consistently, the SFM readings 
flatten out and approach zero. Attack, steady-state 
and decay sections become clear in figure 6, 
whereas obtaining this information from time or 
pitch methods is much more unreliable. This is 
important in that features can now be applied or 
developed according to region. For example, more 
accurate pitch detection can be carried out based 
only on the steady-state section of the waveform. 
This is important for string sounds as a significant 
acceptable fluctuation in pitch does exist due to 
the attack style and consequently physics of the 
string and instrument.  
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e) Spectral Flux 

Disappointingly and not expected, spectral flux 
did not reveal useful results. 

f) Cepstral Analysis 

i.  Cepstral Coefficients 

Four orders of statistics were applied to the real 
and Mel cepstral coefficients. Mean, variance and 
kurtosis of the real cepstrum coefficients provided 
useful results for classification purposes as can be 
seen in figures 7, 8, and 9 respectively. Only the 
variance and kurtosis readings of the Mel cepstral 
coefficients, which are visible in figures 10 and 11 
have shown to be useful. The mean did not 
separate the data lists in two distinct groups. The 
limitation of the real cepstrum is that it contains 
no phase information.  
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Figure 7: Mean values of the real cepstrum 
coefficients. 
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Figure 8: Variance readings of real cepstral 
coefficients. 
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Figure 9: Kurtosis readings for real cepstral 
coefficients. 

 
Converting into the Mel scale in this instance was 
not a distinct advantage. Developed by Stevens 
and Volkman, a Mel is a measure of perceived 
pitch of a tone [14]. It is not a linear scale and for 
this reason better represents the human auditory 
system.  This could simply be due to the fact that 
all the data file pitches fall below 1 kHz. This is 
within the human speaking range which is the 
range where the human auditory system is at its 
most sensitive. However it is accepted that the 
real cepstrum provides the most successful results 
[14].  
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Figure 10: Variance readings for Mel cepstral 
coefficients.
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Figure 11: Kurtosis readings for Mel cepstral 
coefficients. 

 
ii. Cepstral Log Energy 

The log energy is often used as a relative measure 
of cepstral energy and how it changes [13]. 
Figures showing the log energy of the beginner 
notes versus good legato notes show distinct 
grouping patterns. It is also evident that the good 
legato notes have less variance and are more 
consistent which supports the fact that beginners 
have less bow control. As for beginners having 
higher energy readings, a logical explanation for 
this from a violinist’s perspective is linked to 
efficiency and knowing how to make one’s 
instrument resonate effortlessly.  
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Figure: Real cepstral log energy. 

 

VII   CONCLUSIONS 
The efficiency and usefulness of six features for 
describing timbre quality within the violin timbre 
space have been considered. Some of theses 
features work best on complete notes whereas 

others, such as the spectral flatness measure and 
the spectral centroid, are most effectively applied 
to a moving or windowed signal. The violin 
timbre space remains far from being defined in 
quantitative terms and work will be continued in 
this area. 
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