Chapter 6

Software Design Description (SDD) and Specifications

Introduction

This chapter contains the Software Design Description (SDD). It includes the specifications for various processes as well as the design decisions that led to them. In some cases classes and methods are referred to although more detail on these is contained in the next chapter on detailed design. Reasons for choosing various data structures are given as well as reasons for rejecting others. By the end of this chapter the reader should have a good understanding of how the data was generated and used to find an unknown key.

Name: Software Design Description (SDD)

Author: John Loughran

Date: 13th December 2002

Revision: 1.3

History:
v1.3, 2/12/02, Decided to rearrange ciphertexts in array files corresponding to hashtables

v1.2, 25/11/02, Multiple hashtables approach

v1.1 11/11/02, Multiple text files approach

v1.0, 1/10/02, First version where one hashtable should store all pairs

Design Overview

The system is designed to generate and store 228 (encrypted header, key) pairs in a table using data structures described below. It should also generate and store separately a list of 228 ciphertexts, to simulate incoming ciphertexts. Methods should be provided to generate and store these structures taking account of storage and memory resources available. The system should then provide a means to compare all the stored ciphertexts with the stored table and if a match is found to return the key.

System Architectural Design

The program should be designed to run on a Windows 2000 or NT platform with 1 GB of RAM and 80 GB of storage space. It should be developed in Java using the JDK version 1.3.1. Because JDK 1.3.1 lacks many cryptographic functions the IAIK Java Cryptographic Extension (JCE) should be installed alongside it to provide this functionality. It should facilitate rapid prototyping as it provides an easy to use security interface. It does not impose restrictions on key size unlike the U.S. version. Using the IAIK JCE will obviate the need for getting the Sun version of the JCE software signed at the end thus increasing the portability of the system. As a bonus it also provides many functions unavailable in the JDK 1.4.1. The JCE is described in more detail below and in the next chapter.

The only user interface required to run the program is an MS DOS command prompt. A batch file is provided so that the program is run with the necessary switches. One switch increases the Java heap size to 1 638 MB, effectively increasing the memory available for use by Java. On the platform described above this still leaves sufficient memory for the operating system and a few standard applications to run concurrently without significant disturbance. For this to work effectively the virtual memory must be increased manually to between 2 000 MB and 4095 MB depending on the process and free hard disk space.

The Software Design Process

The main design process used was incremental development and prototyping. Design was based initially on a prototype that stored a relatively small table in memory and searched for a match between headers in this table and a relatively small array of ciphertexts. This prototype was implemented and tested and found to work satisfactorily, although no key was found. As detailed in later chapters, memory and storage space problems were encountered in scaling up the initial prototype. As a result research was done to find an efficient strategy for storing the generated data and reading it into memory as necessary. The choice of data structure to store the table in particular was critical, initially led by theoretical research and subsequently by testing. These issues will be discussed in detail in this and following chapters.

General Specifications

The system was designed to do the following tasks:

1. Encrypt a header repeatedly (228 times) using a different randomly generated DES key each time.

2. Store the header/key pairs in a table or tables.

3. In order to simulate incoming ciphertexts to compare with the above table(s), encrypt the same header repeatedly (228 times) using a different randomly generated DES key each time.

4. Store the resulting ciphertexts in a simple data structure, to use for trying to find a key later,

5. Discard the keys used in the generation of these ciphertexts.

6. Provide a means to search the table(s) for each ciphertext and if a match is found to return the key used to encrypt both.

7. Provide a means of recovering the plaintext header from the ciphertext with the found key.

Fig. 6.1 shows the above data structures in diagrammatic form.

Following testing of the original prototype, and attempts to increase the size of tables and the number of ciphertexts generated it became obvious that it was necessary to

8. Provide methods for quickly assessing memory usage and timing various processes.

9. Develop a strategy for breaking up the above tables and ciphertexts into more manageable pieces, and a means to load the pieces into memory as necessary.

10. Minimise memory and storage requirements.

11. Maximise memory available to Java without severely compromising the system.

These latter tasks proved the biggest challenge in this project stretching person and machine to their limits. A discussion of the design approach to each of the above tasks follows a brief introduction to the JCE.
The Java Cryptographic Extension

The Java Cryptographic Extension (JCE) is an extension to the standard Java packages contained in the Java Development Kit (JDK) 1.3.1. The JCE is an API for cryptographic algorithms. The DES algorithm was used here to generate keys and use them for encryption. The JCE was created separately by Sun because U.S. law considers strong cryptography to be a weapon and therefore subjects it to certain export restrictions. A later version of Java, the JDK 1.4.1, incorporates a less powerful form of the JCE, which places limits on various things such as key size. It also required the user to obtain a signature from Sun for the software product. To obviate this necessity and to use the more powerful JCE it was decided at an early stage to develop in Java 1.3.1 and install the JCE alongside it. A version of the JCE called the IAIK JCE, developed in Austria, was obtained and installed as explained in appendix C which deals with setup. The IAIK JCE was implemented according to Sun’s specification and following the rules laid down by the Java Cryptographic Architecture (JCA) which governs class design in the JCE. Having discussed the JCE the next section deals with a component of the first and third tasks listed above, i.e. encrypting the header.

Encrypting the Header

It is necessary to encrypt the header to generate both the tables and the ciphertexts. The header chosen should be a string which when encrypted results in a single block of ciphertext. This will minimise memory and space requirements. The string should, however, be of sufficient length that it might represent the first few characters of actual headers coming across the Internet, for example. This string should then be encrypted using methods from the JDK and IAIK JCE to produce the encrypted header. This process should be repeated 228 times using different random DES keys. To produce the tables each encrypted header and the key used to encrypt it should be stored in a table.

On a separate occasion the process should be repeated but only the encrypted headers (known on this occasion as the ciphertexts) should be stored, e.g. in an array. The key used to encrypt them can then be discarded. It is important that the process be repeated using new randomly chosen DES keys so that a new lot of 2^28 ciphertexts is produced. This ciphertext array is to be used later to simulate incoming ciphertexts such as those that might be intercepted in transit across the Internet, or those used as file headers for files of the same type stored on disk. An array should be the first choice of data structure used to store the ciphertexts as they are to be examined sequentially and it is felt the simplest data structure possible might use least space. Also the size of the array needed to test the Biham algorithm, 228, is known so there is no advantage in using a dynamically resizing array such as a Vector. Fig. 6.1 shows a diagrammatic representation of one possible implementation of these data structures.

	[image: image1.png]

	Figure 6.1 Diagrammatic representation of the data structures needed

The reasons for using the full range of a long, including negative numbers, to encode the key values are explained in chapter 7 in the section entitled Storing the Keys Efficiently.

Choosing a Hashtable to Store the Table

Choosing a data structure to store the (encrypted header, key) pairs was a more difficult decision. A Hashtable is the first choice, driven by experience and research, since searching a Hashtable has constant time complexity, as confirmed by [Java Doc,1.3.1] [Watt,’01] [Horstmann,’00] [Schildt,’02] and others. This is because of the way a Java Hashtable works. Java Hashtables store values (in this case the Key object) and keys (in this case the encrypted header) as pairs indexed by the hashtable key. Both value and key must be Java Objects and must implement the hashCode() and equals() methods. Before an object is inserted into a Hashtable, using the elegantly named put(key, value) method, the hashCode() of the key is obtained (see next diagram). This returns an int which effectively decides the index of the background array used by the hashtable at which the key and value will be stored. This array location is called a bucket. If a collision occurs, where an attempt is made to put an object into a bucket containing another object two principle algorithms exist to resolve the collision in a deterministic manner [Watt,’01]. One algorithm stores the objects in a linked list. Java does not specify which algorithm it uses, but it handles collisions without problems and resizes the Hashtable if it becomes too full. Specifying a large initial capacity for the Hashtable should also reduce collisions and the need for resizing. The next diagram shows how objects are inserted into a hashtable.

	[image: image6.png]

	Figure 6.2: How a Hashtable works when inserting a pair.

To search a Hashtable for a given key is quite straightforward and computationally extremely efficient, with constant time complexity O(1) [Watt,’01]. Using the get(key) method the hashcode of the key is obtained and the number returned is the index of the background array in which to look. If the key is there the value is returned instantly, even if the Hashtable were to contain 228 pairs (See fig. 6.3).. Even a binary search would take 28 times as long.

	[image: image2.png]

	Figure 6.3: How a Hashtable works when searching for a Hashtable key.

However, despite its time efficiency, concerns were expressed about the memory and storage space required, since there are certain overheads associated with Hashtables compared with two-dimensional arrays for example. This was an acute problem when testing proved that the whole table could not be stored in memory at once as a single Hashtable. Further testing revealed that the same was true for arrays and so a new approach was needed.

Increasing Available Memory

For a memory intensive Java program to run efficiently certain steps may be taken. These include:

1. Using a more powerful machine

2. Increasing the size of virtual memory

3. Increasing the Java heap size

4. Calling the Java garbage collector at intervals

5. Testing and optimising the code to minimise memory use.

The detailed design and implementation of the above strategies will be described in the next chapter. Following their implementation and discussions with the project supervisor the redesign of storage strategies for the table and ciphertext arrays will now be described.

Despite the improvements in available memory it was still impossible, as found by testing, to instantiate either an array or Hashtable with more than 16 000 000 entries. Both take an int to index their available slots and so in theory should hold up to

231 – 1 = 2 147 483 647
entries, i.e. the upper limit of an int. Because of the practical limit to the size of a table it was decided to split the table up into multiple tables, storing each one as a file. The question then was whether to continue to use hashtables, storing multiple hashtables, each as a separate file or to store the pairs in text files.

Storing The Tables in Multiple Text Files

The logic behind this idea is to decrease the memory and space requirements per (encrypted header, key) pair stored. Firstly the overheads associated with storing a Hashtable would be eliminated as the pairs could be written to a text file. Furthermore the name of the text file could incorporate part of the encrypted header string. This would mean that when trying to match up a given ciphertext string it would be parsed to determine the first half of the string which would then indicate which text file to look in (see fig. 6.4).

	[image: image3.png]

	Figure 6.4: Multiple Text Files Approach

This innovation would also save space as half the string would no longer need to be stored as it would be incorporated in the filename. One problem with this approach was that all the encrypted headers in a given file would need to begin with the same “half string”, i.e. the first half of the strings in a given file would need to be the same so they could be encoded in the filename. During the implementation of this idea by some of my colleagues (Tom Dowling and Adam Duffy), the problem of converting unreadable characters from the encrypted header to readable ones which could be used in a filename was overcome. The first prototype using this model attempted to generate 214 files, each file containing 214 encrypted headers and their keys. However it became obvious that, using random keys, it would be necessary to generate 256 of these pairs, rejecting most of them and only storing those where the first half of the encrypted header matched part of the filename of one of the 214 files. Even after increasing the number of files to 218 the estimate for the time needed to produce all the pairs needed was two weeks. Although this approach was abandoned for this reason it provided many ideas and methods which were used later in the project.

One such idea was to store the key value in something other than a Key object, which contains many fields of no relevance to the key value, the 64 bit number used to generate the key. The least expensive way to store the key value would be as a number. This would necessitate the development of methods to generate a Key object given a specific key value. For security reasons the JDK does not provide such a method, as keys are meant to be secret and random. How this was implemented will be described in the next chapter.

Storing the Tables in Multiple Hashtables
A hybrid approach developed from the single Hashtable and Multiple Text Files approaches described above. The (encrypted header, key value) pairs should be stored in multiple hashtables, 214 in total. During pair generation a number of hashtables would be kept in memory, and added to until their combined size caused the system to slow significantly. It was found by experiment that 222 pairs could be stored in these hashtables before needing to write them to files and clear the memory using strategies mentioned described above and described in the next chapter. This modification provided another idea that would increase performance when searching the hashtables later.

Each encrypted header should be stored in a particular Hashtable which is itself stored in an array of Hashtables indexed by a certain number from 0 to 214 - 1 (16383). The number chosen as the array index, which may be slightly confusing, is the hashCode() mod 16384 of the encrypted header. . The hashCode() method returns an int, within the full range of an int detailed above. Because of this the positiveMod() method should be used to ensure that negative values were converted to positive values between 0 and 16384. This strategy was chosen as it was quick to implement and promised to give an even spread of pairs between the different hashtables. Initial testing proved this to be the case. The strategy is illustrated in fig. 6.5.
	[image: image4.png]

	Figure 6.5: The Multiple Hashtables approach.

When a total of 222 pairs are generated, the partly filled Hashtables should be written to disk into files whose filenames contained the index of the Hashtable in its array. The idea is that when examining incoming ciphertexts, the hashcode of each ciphertext will be obtained, and mod 16384 of this will be the index. Then the hashtable file whose name contained this index should be read in from the hard disk, the Hashtable object extracted and searched for the ciphertext in question. This means that for each ciphertext only one file should need to be read in and searched, keeping the constant time complexity advantage of using Hashtables. This should combine the memory efficiency of the Multiple Files approach with the time efficiency of Hashtables. This approach was adopted and implemented.

Merging the Hashtables
Because testing has shown that only 222 pairs could be generated on each run of the program before writing to disk, the process should be repeated 64 (26) times storing the Hashtable files to a different directory each time. These mini-Hashtable files will be named htable000000.ser to htable016383.ser. At the end, the files of the same name from each directory will be opened, the mini-hashtables extracted, their pairs added to a big Hashtable, and the big Hashtable written to disk. These files will be named bightable000000.ser to bightable016383.ser. This should provide 214 hashtable files each containing an average of 214 pairs, giving a total of 228 (encrypted header, key value) pairs.

There is a small probability that during the generation of these pairs the same key, which is generated at random, could be used twice, producing two identical encrypted headers. The birthday paradox as applied to the likelihood of getting duplicates within a single class gives the probability of this occurrence as slightly less than 50% in a class of this size. [Stallings,’98]. Even though if duplicates occur they will overwrite each other during the mergeTables() method, the probability of duplicates is such that is likely that only one pair will be wasted due to duplication during the whole process. This applies equally to the generation of the ciphertexts described below.

Testing proved that the Multiple Hashtables Approach was feasible although the final operation took about 36 hours. The next diagram shows the mergeTables() method in action.

	[image: image5.png]

	Figure 6.6: Merging the mini hashtables from each directory to make the big hashtables.

Generating the Ciphertext Arrays

The ciphertext arrays, for use in finding a key, should be generated in a similar way to the hashtable files in the final design. These ciphertexts will be used to simulate incoming ciphertexts gathered across a network or the file headers of multiple files of the same format stored on a large hard disk. Initially 228 ciphertexts were generated as described in the section “Encrypting the Header” above, using randomly chosen DES Keys. The random ciphertexts were originally stored in arrays and written to files of convenient size. However because of the time needed to find a key using these random ciphertexts they should be rearranged as described here using the CipherBlock.splitCiphertextArrayMod() method. Each file containing the random ciphertexts should be opened, the array extracted and the hash code of each ciphertext obtained. The ciphertext should then be stored in one of a number of new small arrays, depending on the index obtained by getting the hashcode mod 16384. In a sense the ciphertexts will be sorted into new arrays. Within each new array the ciphertexts in that array should have the same hash code mod 16384. Thus when trying to find a matching encrypted header it is only necessary to open the corresponding hashtable file with the same index. Testing proved that this speeded up the search for a key from an estimated 6.2 years to an actual 2.4 hours.

Merging the Ciphertext Arrays

For the same reasons described in the section on “Merging the Hashtables”, testing has shown that only 223 ciphertexts can be stored in memory before writing all the small arrays to disk. These should be written to disk in files named from ctbabymod000000.ser to ctbabymod016384.ser. This operation should be repeated 32 (25) times saving the files to a new directory each time. Then the CipherBlock.joinCiphertextArrayMod() method should be designed to merge the array files of the same name from each directory into bigger ciphertext array files. Their names should range from ctextmod000000.ser to ctextmod016383.ser. Thus there should now be 214 ciphertext array files each containing an average of 214 ciphertexts, giving a total of 228 ciphertexts, analogous to the arrangement of the pairs in the hashtable files. In practice this operation took about 2 days. In reality twice this number of ciphertexts were generated in case they were needed. During the split and join operations described above the ciphertexts were stored in ArrayList objects, the modern version of Vectors. This was because an ArrayList can resize itself as may be necessary since the number of ciphertexts which end up in each array is not constant. It also provides a toArray() method to convert the merged ArrayLists to arrays for more efficient storage before writing to files.

Finding a Key

Before explaining the ideas behind the final implementation, the design of the initial prototype, implemented as HappyBirthdayDES.java will be described. This class should read a single small test Hashtable from disk and compare a small test array of ciphertexts with it to try to find a ciphertext which matches an encrypted header, returning the key if a match is found. This would still be the ideal approach were it not for the current limitations on memory and storage space. It may yet be possible to implement this approach on a single machine when one with about 15 GB of RAM becomes affordable, provided Java evolves to allow use of this RAM

When it was decided to store the table as multiple hashtables a second strategy evolved. The CrackDES.compareRandomCiphertexts() method was designed to compare each incoming ciphertext as follows. It is described here to show how inefficient it was. The ciphertext arrays (32 in all at this stage) still contained random ciphertexts in the order in which they were originally generated. When an array was loaded from a file, the hashCode mod 16384 of each ciphertext was obtained and the corresponding hashtable file was opened to look for a match. This involved opening hashtable files 228 times, once for each ciphertext. Opening the hashtable files took about 0.350 s and the estimated run time for the complete search was 6.2 years as obtained using program timing techniques. Obviously a new strategy was needed. This was when the ciphertexts were rearranged as described in the above two sections and the approach described below was developed.

Each of the 16384 (214) newly rearranged files created using the split and join methods described above, each containing an array of ciphertexts, should be read into memory, either sequentially or at random. At this stage each array should contain ciphertexts whose hashCode mod 16384 is the same. As a precaution the first ciphertext in the array should be examined and its hashCode mod 16384 obtained to get the index. This index, corresponding to the number of the ciphertext array file, can then be used to open the corresponding hashtable file. The hashtable should be searched for each ciphertext in turn to the end of the array. Then a new array file should be read in from disk and the process repeated until all 16384 arrays have been searched. Thus the number of times a hashtable file needs to be read in from memory should be reduced from 228 to 214. At first glance, especially to those unfamiliar with powers of 2, this may not seem like a big improvement. It did however, result in an improved estimated time for searching for the key from 6.2 years down to 2.5 hours! On the first testing a key was found in the array whose ciphertexts’ hashCode mod 16384 was 9581, in 1.5 hours. The whole search of all arrays took 2.3 hours. The next chapter deals with the detailed design and implementation of the system, including the solutions to various problems alluded to in this chapter.

PAGE
16

