Chapter 10

Conclusions and Discussion

This chapter will summarise the implementation of the Biham algorithm used here, the challenges this posed and the conclusions reached. It will explore the practical implications due to this attack and how the implementation might be further improved by implementation over a network, using methods and algorithms developed during the course of the project.

Before discussing the implications araising from the successful implementation of the Biham algorithm, the algorithm and its implementation here will be briefly summarised. A piece of known plaintext called a header, common to files of the same type or to messages in the same format, is encrypted using the Data Encryption Standard. The header is encrypted with 228 randomly chosen DES keys. The resulting 228 (encrypted header, key) pairs are stored in a series of 214 tables in such a way that the pairs in each table share a common property. That is that the hashcode of the header mod 16384 is the same for each pair. The incoming ciphertexts are arranged in arrays in a similar way in the same number of files with the same ordering, When an array of ciphertexts is read in, each ciphertext is compared with headers in the corresponding hashtable using a search with complexity O(1). If a match is found the key used to encrypt both is returned and may be used by an attacker.

This project was a challenge both from the conceptual and practical point of view. It stretched the computer beyond its normal limitations and challenged those involved to find a way around them. The inner workings of the hardware and data structures had to be examined, dissected and operated on to force a successful conclusion. The speed of the program is not earth shattering when compared with existing attacks on DES using dedicated hardware. However, the fact that it was possible in a reasonable timescale is due in part to the Biham algorithm and in part to strategies and techniques developed during the course of the project, many of which grew out of its inherent difficulties. Java may limit the amount of memory available to us but in doing so it poses fresh challenges to find solutions which are less memory intensive.

In a nutshell, the Biham algorithm was successfully implemented in Java, with the help of the JCE. Biham’s assertion that a key could be found by a comparison of 228 ciphertexts with a stored table containing 228 (encrypted header, key) pairs has been proved accurate. The fact that the algorithm can be implemented in Java and a key found in an expected average time of just over an hour is encouraging for a cryptanalyst. It is worrying for anyone using DES to encrypt sensitive information or data. As Biham explains in his paper, numerous files of the same type are commonly stored on modern computers with large hard disks. If these files are of the same type they are likely to have the same file header. Using DES to encrypt these files with different keys can in fact enable an attacker to find a key as shown in this thesis, rather than increasing their security as was previously believed. Thus DES cannot be described as a secure way to encrypt data for storage under these circumstances. While this strictly applies only to the ECB mode of DES described here it also applies to other modes of DES and block ciphers in general but with greater complexity [Biham,’02]. In these cases the birthday paradox can still be used to effectively reduce the complexity of an attack to the square root of a brute force attack.

One might argue that finding a single key which depends on receiving messages transmitted over a network, encrypted with 228 different keys, will be of limited use due to the time necessary to receive these messages. This is true in the implementation described here, as 228 ciphertexts must be collected before an attack can succeed with a high probability. However, by listening over a large enough network like the Internet, and forwarding messages of a certain type to a central location, it should be possible to collect 228 ciphertexts in a short space of time. During this time they can be sorted into arrays as described in this thesis and finally merged into 214 arrays ready for comparison with the corresponding hashtable. Generation of the hashtables is not a limiting factor as they can be pre-computed. Indeed given a number of attackers cooperating over a network, tables containing a total of more than 228 pairs can be generated easily, with the result that fewer ciphertexts are needed for a successful attack. The trade off between the total number of pairs in the tables and the number of ciphertexts necessary for a successful attack is shown in the following table (adapted .from [Biham,’02] as it applies to this implementation)

	Number of pairs in tables
	228
	232
	236
	240
	244
	248
	252
	256

	Number of ciphertexts
	228
	224
	220
	216
	212
	28
	24
	1

Table 10.1: The trade off between the number of pairs stored in the tables and the number of ciphertexts required for a high probability of a successful attack:

The improvements described in this thesis, i.e. rearranging the ciphertexts and arranging the hashtables using the mod of the hashcode, may be used to successfully reduce the complexity and thus the time needed for a successful attack. These ideas can be applied equally to modern variants of DES including AES, albeit with greater complexity, as they do not depend on the inner workings of the cipher but on the way in which it is employed [Biham,’02].

It is likely that this system could be implemented more efficiently over a distributed system, with some modifications. On the platform used here, it was possible to hold tables containing 222 pairs in memory without undue slowing of all computer processes. If it were possible to do this on 64 computers in a network then all the hashtables could be resident in memory at once. This would speed up the process of looking for a key considerably as ciphertexts could then be examined individually without the delay associated with opening large hashtable files (about 350 ms for a 475 MB hashtable file containing 214 pairs). Thus the delay associated with having to collect 228 ciphertexts before looking for a key would then be eliminated. Ciphertexts could be continuously examined as they arrived over the Internet for example, and when a match was found the key could be recovered with only the delay associated with sending a request over the cooperating network. The recovered key would still be fresh, so to speak, and could be used by an attacker to substitute messages favourable to themselves. Biham makes these assertions in his paper without describing how they can be put into practice. It is our belief that this thesis goes some way towards explaining how this can be done.

PAGE
3

