Chapter 8

System Test Document and Unit Testing

Name: System Test Document (STD)

Author: John Loughran

Date: 13th December 2002

Revision: 1.2

History:
1.2 Tested multiple hashtables with ordered ciphertexts

1.1 Tested multiple hashtables approach

1.0 Tested first version which used one hashtable to store all pairs

Introduction

System Overview

The system was designed to find an unknown key given 2^28 ciphertexts, having stored 2^28 (encrypted header, key) pairs in a table. The ultimate test of the entire system is: “Can the key be found?” To build the system, however, it was necessary to generate and store the table of pairs and the ciphertext arrays to use in testing it. Both of these features should be tested for time and space efficiency as detailed below. It was necessary to test each prototype for storing the table(s) as it emerged, and to estimate the time to find a key using each prototype. Results of the tests are contained in the next chapter.

Test Approach

The overall approach to testing was to identify what strategies and data structures would get the job of finding a key done as fast as possible. A secondary requirement was to generate the necessary files with the minimum use of system resources consistent with a successful outcome, within the time frame for a double honours project.

Test Plan

This section will detail the features to be tested, the approach and methods used for each.

Features to be tested

1. Generating a DES key and the Encryption/Decryption process: The aim was to verify that the methods used were valid, that a valid DES key could be generated and used successfully to encrypt and decrypt strings.

2. Finding a key: The aim was to find a key as described in the introduction to the STD if one could be found. It was expected that one would be found on average having passed 2^28 ciphertexts through the system.

3. Generating and Storing the Table(s): Here memory and storage space used was more important than timing considerations but both were measured and displayed using purpose written methods in the Utility class. The effect of garbage collection on free memory was tested also, while these processes were running.

4. Generating and Storing the Ciphertext Arrays: A similar approach to that used in testing the generation and storage parameters for the tables was used here.

5. Spread of Values using mod 16384 of the hashcode: This was tested when the Hashtables were split up and rearranged. The criteria for success were an even spread across the individual hashtables with some expected random variation in size.

Testing Tools and Environment

The tools used consisted of methods written and system tools. Many of the former are contained in the Utility class, namely mayPrintMemory(), mayPrintMemoryUsedSince(), getTimeSince() methods which are self explanatory and gave feedback at runtime in a manner that allowed redesign of the program when necessary. A strategy for producing a set number of print statements during long for loops which used modular arithmetic can be studied in either the HeaderKeyTable or CipherBlock classes in the Code appendix. This was particularly useful given the testing environment which consisted mainly of a DOS command prompt, which could only display a fixed number of lines despite expanding the buffer. Other resources included the Windows 2000 and NT Task manager, which gave a graphic display of memory usage and CPU activity as well as indicating when the program was effectively idling.

Test Cases

Test Case-1e and 1d: Encryption and Decryption

· The purpose was to verify that a DES key could be generated using the IAIK JCE, and used for (1e) encryption and (1d) decryption.

· The input for encryption (1e) was a series of short plaintext strings and for decryption (1d) the resulting ciphertexts.

· The criterion for a pass was that the processes were reversible, capable of reproducing the original plaintext from the ciphertext.

· The test procedure was numerous runs of the DESTest class, adapted from a class originally developed by [Knudsen,’98], an independent outside source.

Test Case-2: Finding the key

· The purpose was to test how long it would take to find a key.

· The input was a comparison of 2^28 ciphertexts with a table of 2^28 stored pairs.

· The criterion for a pass was that a key was found. If a key was not found this would not be considered a fail but a reason to try again with another group of 2^28 ciphertexts. On average it was expected that one key would be found for each group of 2^28 ciphertexts input.

· The test procedure was a trial run of the CrackDES class.

Test Case-2 can be further divided into TC-2a and TC-2b

TC-2a

Has all the properties of TC-2 but the ciphertexts are passed in at random.

TC-2b

Has all the properties of TC-2 but the ciphertexts are arranged in groups corresponding to the hashtable in which to search, as described in the Specifications chapter (Chapter 6).

Test Case 3: Memory Usage

· The purpose was to diagnose memory usage during various processes described above

· The inputs varied during different tests, i.e. the number of iterations of a loop.

· The expected output was that free memory as reported by the diagnostic methods written did not fall below a value where the program slowed noticeably. This was a fairly qualitative but effective approach

· The test procedure was to observe memory printouts at runtime and record them manually, altering the program where necessary.

Test Case 4: Storage Space Usage

· The purpose was to keep the storage space used within that available on the hard disk, even during generation of multiple small files.

· The input parameters were the number and size of files being generated on each run.

· The output was the actual total size of the files and the size on disk which differed from the actual size due to the minimum space allocated to a file by the operating system.

· The procedure was a manual inspection of space used following and during many of the processes outlined above.

Test Case 5: Spread of Values using mod 16384 of the hashcode

· The purpose was to ensure as even a distribution as possible of pairs within different tables and of ciphertexts within arrays.

· The input was the files that were to be split up to be rearranged and finally merged.

· The expected output indicating a pass was an even spread of file sizes.

· The procedure was a quick inspection of file sizes at frequent intervals.

Unit Testing

Unit testing was a major part of this project as a complete system test was impossible until the end when all the files had been generated and stored. The unit tests are referred to thoughout the report where they are relevant. The details and results of some of these tests can be found in the results chapter (next). Some of the tests described were to drive the further design and were essential to it. Logs of all tests and runs of various processes are included on the accompanying software for reference.

PAGE
5

