Chapter 4

The Biham Algorithm

In his paper in Information Processing Letters, 2002 [Biham,’02], Eli Biham shows that the theoretic strength of a block cipher (in Electronic Code Book or ECB mode) cannot exceed the square root of the size of the key space. Taking DES as an example, he maintains that one key of DES can be recovered with complexity 228 even though there are 256 possible DES keys.

Previously it was thought, not unreasonably, that the complexity of recovering one of the 256 possible DES keys was 256, or, more generally 2k where k is the number of bits in the key value and 2k is the key space, i.e. the number of different key values possible. Biham maintains that the complexity of a block cipher has an upper bound of 2k/2. It was also believed that changing keys frequently increases security. Biham maintains that changing keys frequently provides the attacker with a greater number of ciphertexts to use in the attack thus decreasing security.

He chose DES as his prime example since it is the most known and studied block cipher. Prior to this paper differential [Biham,Shamir,’93] and linear [Matsui,’93] cryptanalysis suggested that the theoretic strength of DES is bounded by 247and 243, respectively. This means that those attacks require those numbers of known plaintexts and complexity to find a key. However he cites the main threat to the security of DES as the exhaustive search for the keys on the Internet and on special purpose machines which can do a brute force search for all 256 possible keys within a few dozen hours [Distributed,’02].

Biham’s algorithm involves three important concepts:

1. A known plaintext header

2. The birthday paradox

3. Key collision

Known plaintext header

Many encrypted messages begin with a known header. These headers may be a file format header like the postscript prefix %!PS-Adobe-2.0, or an added prefix in communication messages. If these headers are encrypted using many different keys this results in the production of multiple different ciphertexts of the same plaintext header. These ciphertexts may be collected and used in an attack as described in this thesis.

The birthday paradox

The birthday paradox is often presented in elementary probability courses to demonstrate that probability results are often counterintuitive [Stallings,’98]. The problem can be stated as follows: What is the smallest number of people in a group such that the probability is greater than 50% that two of them have the same birthday? The answer turns out to be 23. A variant of the paradox shows that given some property which has n possible values and given two classes, each of about
[image: image1.wmf]n

 entities, there is a high probability that some entity in the first class has the same value as some entity in the second class. Applied to this algorithm, this means that it is only necessary to have two collections of
[image: image2.wmf]n

ciphertexts to have a high probability of finding a matching pair of ciphertexts, one from each collection. A simple way to understand this paradox is to consider comparing every one of the
[image: image3.wmf]n

ciphertexts from one collection with all of the
[image: image4.wmf]n

ciphertexts from the other collection. This gives
[image: image5.wmf]n

.
[image: image6.wmf]n

 = n comparisons which is equivalent to comparing 1 ciphertext with all n possible ciphertexts where we would naturally expect to find a match. The mathematical basis for the birthday paradox is given in appendix E, in such a way that those who studied mathematics in school should be able to follow it. It contains some interesting conclusions and a graph similar to the graph below which shows the probability of finding a match between two collections of 214 encrypted headers and 214 ciphertexts, where n is 228 and
[image: image7.wmf]n

is 214 . (These numbers were chosen so Excel could handle them) It shows that when the collection sizes are
[image: image8.wmf]n

the probability of a match being found is 0.63.

	[image: image9.png]oson0 .

063 g

16384

I memmbers in each class

	Figure 4.1: Graph showing the probability of finding a match between two classes each with k members where there are 228 possible values in each class.

Key collision

As described in chapter 2, DES keys have 256 possible values. If we let n represent this number, the key space, then
[image: image10.wmf]n

 is 228, the number of ciphertexts we need in each collection.

Key collision means effectively comparing 228 headers encrypted using different keys with 228 incoming ciphertexts to find a key used to encrypt one of them.

The Biham Algorithm

The Biham algorithm can be summarised as follows:

1. We encrypt the known plaintext header 228 times, each time with a different randomly chosen DES key,

2. This produces 228 (encrypted header, key) pairs which should be stored in a table, indexed by the first field i.e. the encrypted header.

3. We then compare 228 incoming ciphertexts of the same plaintext header, each encrypted with a different key, whose value is unknown to us, with the encrypted headers in the table.

4. When a match is found the key value corresponding to the matching encrypted header is returned.

It is expected that a key will be found while it is still in use and that it can be used to decrypt the message or even substitute a message favourable to the attacker.

Note on terminology: Here we use

· encrypted headers to denote the known headers encrypted by the attacker using different keys and

· incoming ciphertexts or just ciphertexts to denote encrypted headers coming in, perhaps over the Internet, whose keys are unknown.

Both are essentially the same thing, i.e. a known plaintext header encrypted with different DES keys. The difference is that for the encrypted headers we know the key used while for the ciphertexts we do not.

As described above the birthday paradox ensures that this algorithm should succeed with a high probability. It can be seen that this algorithm depends on the keys changing frequently so that a sufficient sample (228, about 250,000,000) of ciphertexts can be collected. This could be achieved by listening in on a large number of messages or transactions over the Internet and passing on the headers of each message for decryption at a centralised location.

In his paper Biham describes a modification of the attack where the number of encrypted headers and incoming ciphertexts varies. In summary the product of both should equal the key space. The following table summarises this idea, showing the number of ciphertexts needed for success depending on the total number of pairs stored in tables.

	Number of pairs in tables
	228
	232
	236
	240
	244
	248
	252
	256

	Number of ciphertexts
	228
	224
	220
	216
	212
	28
	24
	1

Table 4.1: The trade off between the number of pairs stored in the tables and the number of ciphertexts required for a high probability of a successful attack:

Thus by storing more pairs less ciphertexts are needed, until in the last column above all possible keys are stored and a key should be found given one ciphertext. This latter approach seems the most logical until we realise that 256 is 72 057 594 037 927 936 while 228 is a modest 268 435 456! The latter approach is known as the dictionary attack. To use this approach we would not generate the (encrypted header, key) pairs using random keys but would use all possible key values to encrypt the headers.

Hence there is a trade off between using a big table to find a key quickly and the memory and storage space required. In this thesis we believe we have found a way to make such an attack feasible using a table of size 228.

_1101526702.unknown

