Chapter 7

Detailed Design and Implementation

Introduction

This chapter deals with the detailed design and implementation of the system described above. It will describe the prototypes developed, problems encountered and the solutions to these problems. The code will be explained and referred to. The code itself and Java documentation is included on the accompanying software and in appendices G and F respectively. The design of the project evolved through three main prototypes described in the preceding chapter. These were:

1. Storing the table as a Single Hashtable.

2. Storing the table as Multiple Text Files

3. Storing the table as Multiple Hashtables

In discussing the third prototype the way in which the hashtables were ordered will be described, which is paralleled in the way the ciphertext arrays were finally ordered. Before discussing the encryption process, the memory and space limitations which led to the development of the second and third prototypes will be discussed as well as the strategic approach to these problems. In the interest of brevity the code in this chapter is from the final implementation only.

Memory and Space Limitations

During generation of the tables, when an attempt was made to generate big tables containing more than 223 pairs the process ground to a halt. OutOfMemory errors were encountered at runtime and the program would crash with the loss of all data not written to disk. The first approach to this problem was to increase the memory and space available by moving the project to a bigger machine, i.e. a Pentium 4 with clock speed 2.5 GHz, 1 GB of RAM (Random Access Memory) and an 80 GB hard disk. Another improvement in performance was obtained by increasing the size of the virtual memory allocated by the operating system to the maximum of 4095 MB. This meant that more items could be stored in memory although a decrease in performance was expected due to the constant swapping between real memory and virtual memory which is on the hard disk. This was observed but unavoidable. A third improvement was produced by increasing the Java heap size at runtime, i.e. the amount of memory that Java is allowed to use for objects. This was done using a switch at the command prompt, but on both platforms the maximum heap size that did not cause a runtime error was 1638 MB, as obtained by experiment.

One advantage of using Java to develop this system was the memory management methods it provides. The C/C++ programming language is notorious for memory leaks and the need to call destructors which clear memory no longer referenced. The Java Virtual Machine (JVM) however, on which the Java code runs, periodically calls a garbage collector, gc(), which frees up memory used by objects no longer referenced or objects that are out of scope. Furthermore this method can be called from within the program, e.g. at the start or end of loops, to free up memory. Without this facility it would have been extremely time consuming to implement this system. In this memory intensive program, gc() was called regularly and timing experiments showed it took up to 6 minutes to clear available memory at certain stages. In the latter stages of the project a further strategy was developed by Andrew Burnett to run the program repeatedly using a batch file passing in arguments each time which advanced the program starting with maximum free memory available to it at the start of each run. Using all the above techniques it was finally possible to keep approximately 223 items in memory before storing them to disk.

A further problem was encountered when generating and storing lots of small files. These files occupied more space on disk than their actual size. As an example each mini hashtable file averaged 7.3 kB in size but had to occupy the minimum file allocation of 32 kB. As a result the 64 directories, each containing 16384 mini hashtables before merging, took up 32.0 GB on disk, rather than the total actual file size of 7.57 GB. After merging, they only occupied 7.8 GB of space on disk in total. This information is tabulated in the results in chapter 9.

The Utility class

At each stage in the process of testing and dealing with the problems mentioned above, accurate memory diagnostics were important. These were provided in a purpose written Utility class, the details of which are in the appendices. However, its methods are self explanatory:

mayPrintMemory(),

mayPrintMemoryUsedSince(timePassedIn),

getTimeSince(timePassedIn).

The Boolean variables to turn the first two methods on or off as required.were placed in the driver class: BirthDEDDriver. To ensure portability of the system and improve modularity BirthDESDriver was used as the driver for most classes and processes. These two classes are shown in the following diagram.

	[image: image1.png]BithDESDriver

&printMermaryEnabled
&printStatementsEnabled

®main()

Utility i/
fg—— Headerk ey Table
mayPiint
SmayPrintin() Bphezders
®mayPrintMermary () N
mayPrintMemary Since() \OEZEEOTames()
Sgeflimesince() @mergeTables()
Sforrat()
SpostiveMod(

SpecificDESKey /

SytesFromLong()
YongFromDESKey()
WmakeDESKey()
Smain)

Hashtable files

	Fig. 7.1: The Utility.java and BirthDESDriver.java classes

Reducing the frequency of print statements speeded up most processes considerably. For this and other reasons print statements were encapsulated in mayPrint() and mayPrintln() with similar Boolean switches in the driver. There follows a description of the encryption process central to the project.

Using the Java Cryptographic Extension for the Encryption Process

Since we used the JCE for the encryption process it was necessary first to enable its use as follows. A central idea of the Java Cryptographic Architecture JCA is that of security provider. A security provider is a collection of algorithms with a java.security.Provider object. All the providers installed are listed in the java.security.Security class, which can be found in the main JDK bin directory. When a program calls a factory method to get a cryptographic object, e.g. KeyGenerator.getInstance(“DES”) the method asks the Security class to provide the object based on the specified algorithm, in this case DES. The Security class then searches through the installed providers to find one that can provide the desired object with the algorithm specified. It searches them in the order in which they were added to the Security class e.g. 1.Sun, 2. IAIK etc. and returns the desired object from the first provider that can provide it. This means that the IAIK provider must be added as described here. From a design point of view, to enhance portability, it was decided to do this dynamically at runtime rather than during setup, by adding the following code at the start of any method using the JCE methods:

java.security.Security.insertProviderAt

(new iaik.security.provider.IAIK(),1);

As this and many other methods contained in the JCE throw various exceptions it was necessary to enclose them in try, catch, finally blocks. This was also a necessary precaution for file input and output.

Encrypting the Header
To minimise the memory and storage space required a string of seven characters was chosen as the header, namely “%!PS-Ad”. These are the first seven characters of the PostScript Adobe file header. As described later, testing proved this was the longest string that produced the ciphertext block of minimum length which was eight bytes. Some of the following details of the encryption process are crucial to the subsequent design of the system. Java uses Unicode to encode characters. Many common applications uses ASCII. Unicode characters require two bytes to encode a character while ASCII only requires one. Having stored the header as a string it was then converted to a byte array using the UTF8 Unicode algorithm which effectively converts each two byte Unicode character to a one byte ASCII character as.

String headerS = "%!PS-Ad";

byte[] headerB = headerS.getBytes("UTF8");
Testing using Messing.java confirmed that the byte array produced contained seven bytes. The DES block cipher adds padding later to give an eight byte block of ciphertext, as described in chapter 3 under PKC#5 padding..

Using the methods from the JCE packages, the encryption process continues as follows. An instance of a DES cipher object, in ECB mode using the PKCS5 padding algorithm [Baltimore,’02]) is obtained as:

desCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

Then a key generator is obtained using a factory method as:

keyGen = KeyGenerator.getInstance("DES");

These objects can be reused and so are created outside the loop to generate the ciphertexts. Inside the loop the key generator is initialized using a new SecureRandom object and the key object was generated as:

keyGen.init(new SecureRandom());

key = keyGen.generateKey();

The SecureRandom object provides a good quality random number. The randomness of this number was tested empirically and finally shown to be of good quality since only one key was eventually found by comparing large numbers of ciphertexts with encrypted headers. Then the key object was generated and the header byte array encrypted as:

 desCipher.init(Cipher.ENCRYPT_MODE, key);

 headerBEncrypted = desCipher.doFinal(headerB);

The resultant encrypted byte array was then converted to a String for efficient storage as:

 headerEncryptedStr = new String(headerBEncrypted);

Extensive testing using Messing.java and the memory diagnostic suite described above proved that less space was occupied by ciphertexts stored as Strings rather than as byte arrays. This was a little surprising although research [Schildt,’02] [Horstmann,’00] indicated that at least some implementations of Java allocate four bytes of memory to store each byte in a byte array.

The same process described above was used to generate the ciphertexts later stored in arrays which would later be used in testing. In the latter case it was not necessary to store the keys used. In the former case it was necessary as described next.

Storing the Keys Efficiently

One idea that evolved from the Multiple Text Files approach described in the previous chapter was to store the key value in something other than a Key object, which contains many fields of no relevance to the key value, the 64 bit number used to generate the key. The Key class provides a toString() method which returns typically:

DES Key: 01:23:45:67:89:AB:CD:EF

where each of the digits above is a hexadecimal digit. Two hex digits together encode a byte, and eight bytes are sufficient to input a value as the basis for a DES key. However, the JDK 1.3.1 (or 1.4.1) does not provide a Key constructor which takes a specific key value as an argument. Instead it takes in a secure random number. This is for security reasons as ideally DES keys should be secret and random. In the implementation of the Multiple Files approach methods were written, using the JCE, to create a DES key given a specific value as an argument. These methods were later incorporated into the SpecificDESKey class. The makeDESKey() method takes in a byte array which is then used to create a specification for the key as:

KeySpec spec = new DESKeySpec(byteA);

It then gets an instance of a SecretKeyFactory object and uses it to create a SecretKey which is cast to a Key before being returned as:

SecretKeyFactory desFactory =
SecretKeyFactory.getInstance("DES");

 SecretKey thisSecretKey = desFactory.generateSecret(spec);

 Key thisKey = (Key)thisSecretKey;

Thus all that was now necessary was to store the key value, e.g. as a number or a string, further saving space and memory, as when a match was found, the stored key value could be converted to a Key object using the above method.

In the final implementation it was stored as a Long object. The output from the toString() method of each Key object was parsed first to extract the 16 hex characters, then to convert them to a long primitive data type. The full range of a long was needed i.e.

-263 to 263 – 1 or -9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

to encode the key values. To do this it was necessary to use 2’s complement to allow DES key values in the range 7F:FF:FF:FF:FF:FF:FF:FF to FF:FF:FF:FF:FF:FF:FF:FF to be encoded as negative long values (See Diagram in chapter 6). Methods were also written to reverse the process. To store each long in a Hashtable it had to be converted to a Long object, as Hashtables can only store objects. All of the above was done in the method:

 keyValue = SpecificDESKey.longFromDESKey(key.toString());

 Long keyValueL = new Long(keyValue);
See the SpecificDESKey class in appendices F and G for full details of these methods.

Storing the Pairs in the Hashtables

In the final implementation the (encrypted header, key value) pairs were stored in the hashtables as follows, using the makeTables() method in the HeaderKeyTable class. An array containing 214 empty hashtables whose capacity was 33% greater than 26 was instantiated as:

Hashtable[] hTable = new Hashtable[N_TABLES];

 int tableNo = 0; // index of array of hashtables
 /** Allocate space for each empty hashtable */
 for (tableNo = 0; tableNo < N_TABLES; tableNo++)

 {

 hTable[tableNo] = new Hashtable(N_ROWS / 3 * 4);

 // this size avoids frequent rehash operations
 }
Inside the loop to generate the encrypted headers the hash code of each encrypted header was obtained. The result of modular division of this number by 16384 (214) was computed and used as the tableNo index.

/** decide which table to add this pair to

 by hashing the headerE and mod'ing it */
 int hashedHeaderE = headerEncryptedStr.hashCode();

 // returns an int in the range -MAX_INT to +MAX_INT
 tableNo = Utility.positiveMod(hashedHeaderE, N_TABLES / 2);

 // returns an int in the range 0 to N_TABLES

Then the encrypted header and the key value of the key used to encrypt it were put into the appropriate Hashtable as:

hTable[tableNo].put(headerEncryptedStr, keyValueL);

This created an array of 214 hashtables with approximately 28 pairs in each, giving 222 pairs in all. These mini hashtables were then written to disk in a new directory for each run of the loop. Standard Java methods including writeObject() were used for this purpose to enable the readObject() method to read each Hashtable in later ready to use for comparisons with incoming ciphertexts. The memory was cleared using the garbage collector and the process was repeated within the method until a total of 64 directories or 228 pairs had been stored.

The mini hashtables were then merged using the mergeTables() method as described in the specifications in the previous chapter.. The details of this can be seen in the code and Javadocs although the method signature alone illustrates the complexity of this task:

public static void mergeTables(int n_dirs,

 String mainDirectory,

 String dirnameStartsWith,

 int dirnameNumLength,

 int n_files,

 String filenameStartsWith,

 int filenameNumLength)

 {

In common with other methods described here, the mergeTables() method uses File objects to dynamically read from and write to different directories at runtime, often making new directories in the process. A sample of the code used for this purpose follows:

bigTableNameStart = "big" + filenameStartsWith;

 bigFilename = bigDirPath + "/" + bigTableNameStart +

Utility.format(fileNum, filenameNumLength)+ ".ser";

 bigFile = new File(bigFilename);

Most variables above are Strings representing directory names or the initial part of a filename. The format method ensures that filenames end with the number of digits specified by filenameNumLength. For example the code above will form a File object from the string: hashtables/bightable016381.ser, if 16381 and 6 are passed in as parameters.

This process took about two days when the improvements in memory management described above were implemented. The following diagram illustrates the classes and methods used in the process.

	[image: image3.png]BirhDE SDrer
i prirthemoryEnabled
Generating the files @niintStatementsE nabled|
Sming
HeadekeyTabe CipherBiock
@reaers
SmakeCiphetentsy
Smaing) SepltCiphetextAmaiiod)
SmakeTables) SairCipheteirayhiod)
“SmergeTables) maing

ity
Smapirio
SpeciicDESHey Snayprinting
S nanory)
P— ShapiMemaSIe0
SongFrenDESKey0 | | SerTimesioceq
S e
an oaheMod
o J Hashiable files Ciphertext
array iles
Finding the key

BIhDE SDrver Fom
EyprirthemoryEnabled
EprintStatementsE nadled | —————— F——

‘ScompareRandom Ciphertexts(
“maing [ZER Lz

	Diagram of the classes used to generate the Hashtables

Generating and Storing the Ciphertexts

This process was analogous to that described above with a few important differences. In the CipherBlock class the ciphertexts were generated in the same way as the encrypted headers but the keys used were discarded. As described in the previous section the ciphertexts were generated using random keys and stored in arrays of convenient size with no particular ordering. It was not until later that the splitCiphertextArrayMod() method was written to reorder the ciphertexts as described in the preceding chapter. Then the joinCiphertextArrayMod() was written to merge these ordered arrays in a manner analogous to the mergeTables() method described above for the hashtables. These processes resulted in the production of the Hashtable files and Ciphertext array files stored on disk as shown in the diagrams in the previous chapter. After the next diagram, which shows the classes involved in generating these files and finding the key, the process of finding the key will be described.

	[image: image2.png]Utiity BithDE SDriver
&y printMem oryEnabled

*mayPrint() &y printstatem entsEnabled
®mayPrinting L
*mayPrintMemory() ¥main(
®mayPrintMemorySince()
Yget TimeSince()
Sform at()

@positiveMod()

	Diagramatic representation of the classes used to generate the hashtable and ciphertext array files and find the key.

Finding the Key

The end purpose of the project is to find one or more of the keys used to encrypt the incoming ciphertexts. The class used for this is CrackDES, driven by BirthDESDriver. All the driver does at this stage is call the compareCiphertexts() method in CrackDES. The workings of previous prototype methods are described in the previous chapter. The compareCiphertexts() method starts by reading in an array of ciphertexts from disk using the readObject() method as:

cipherTextA = (String[])oIS.readObject();

Currently the array files are opened iteratively, starting with the first. However, this could easily be changed so they are read in at random, or starting with the biggest file. Each array contains ciphertexts whose hashcode mod 16384 is the same, for reasons described in detail in chapter 6, principally to speed up the searching process. Next, the first ciphertext in the array is examined. Its hashcode mod 16384 is obtained as:

int hashOfCText = cipherTextA[0].hashCode();

int hashtableNo = Utility.positiveMod(
hashOfCText,

HeaderKeyTable.N_TABLES / 2);

This is used as the index to open the file containing the corresponding hashtable. Care was taken throughout not to modify this method or the variables used in the interval between generating the ciphertext arrays and generating the hashtables as this would have changed the number returned as the index.

The filename of the corresponding hashtable was created as described above and the object was read in and cast to a Hashtable as:

oIS2 = new ObjectInputStream(new FileInputStream(htableFilename));

 Hashtable bigTable = (Hashtable)oIS2.readObject();

The array was searched sequentially comparing each ciphertext with the encrypted headers in the hashtable and returning a message with the key if it was found as:

if (bigTable.get(cipherTextA[cTextNo]) != null)

 {

………

System.out.println("The incoming ciphertext

matches the encrypted header stored in the hashtable.\n"
 + "The key used to encrypt both was " + theKey);

}
The variable theKey above is created using methods from the SpecificDESKey class described above, which generates a Key object from the key value returned by the Hashtable.get() method. Finally this Key object is used to decrypt the ciphertext in a manner similar to the encryption process as:

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

 cipher.init(Cipher.DECRYPT_MODE, theKey);

 byte[] ciphertextABytes = cipherTextA[cTextNo].getBytes("UTF8");
 byte[] stringBytes = cipher.doFinal(ciphertextABytes);

String decryptedCiphertextS = new String(stringBytes, "UTF8");

This produces the original plaintext header: %!PS-Ad
Of course in a real attack, once the key has been obtained, not only the header but the whole message or file can be decrypted. In addition, as Biham suggested, a message favourable to the attacker could be encrypted using the key found and substituted for the original message.

Since this program takes a little over 2 hours to run and will find a key with high probability in an average time of just over 1 hour given 228 ciphertexts this is not an unreasonable claim. The next two chapters deal with how the processes described above were tested and the results obtained.

PAGE
12

