
A Java implemented key collision attack on the Data
Encryption Standard (DES)

John Loughran
NUI Maynooth

Co. Kildare
Ireland

Tom Dowling
NUI Maynooth

Co. Kildare
Ireland

tdowling@cs.may.ie

ABSTRACT
A Java implementation of a key collision attack on DES
suggested by Eli Biham, [1], is discussed. Storage space
minimization and fast searching techniques to speed up the
attack are described. We also demonstrate the suitability of
Java for large data cryptographic attacks and illustrate the
extensive cryptographic features of the language.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tion—JAVA; E.3 [Data encryption]

General Terms
Algorithms, Security

Keywords
DES, Key collision attack

1. INTRODUCTION
The paper is organized as follows; We firstly give a brief

overview of DES and outline how to implement and use DES
with the aid of the Java Cryptographic Extension,(JCE). We
then outline Biham’s attack on DES. In the next section we
describe the practical details of implementing this attack in
Java and discuss the issues of storage and searching. We
then briefly present the results of our implementations and
finally discuss conclusions, possible generalizations, and fu-
ture work.

2. THE DATA ENCRYPTION STANDARD,
(DES)

DES, [6], is the most widely used example of a symmetric
block cipher. Symmetric Block ciphers use the same secret
information, or key, to encrypt and decrypt messages and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ’03 Kilkenny City, Ireland
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

messages are processed in blocks of fixed length. DES uses
keys of effective length 56 bits which creates a possible 256

distinct keys. Testing each of these keys until you find the
right one is called a brute force attack. There are many
examples, [2], of brute force attacks on DES but we will
implement an attack that does not need to test all the keys.
We can think of the DES algorithm as a black box as Java
provides an easy to use interface to generate DES keys and
encrypt or decrypt using the DES algorithm.

3. JAVA CRYPTOGRAPHY AND DES
In this section we discuss a Java based framework, the

Java Cryptography Architecture (JCA),which we will use
to implement our DES cryptosystem. The discussion is
based on the treatment of JCA presented in [5]. JCA is a
framework that specifies design patterns for designing cryp-
tographic concepts and algorithms. For example any mathe-
matical algorithm that performs encryption is called a Cipher.
The JCA architecture separates concepts from their imple-
mentations. These concepts are encapsulated by classes in
the java.security and javax.crypto packages. For exam-
ple the concept of a Cipher is represented by the
javax.crypto.Cipher concept class. JCA relies heavily on
the factory method design pattern to supply instances of
its concept classes. A factory method is basically a special
kind of static method that returns an instance of a class.
A thorough discussion of the factory method design pat-
tern appears in [3]. The idea here is that a concept class
is asked for an instance that implements a particular algo-
rithm. This is accomplished using a getInstance() factory
method. The following code fragment demonstrates the pro-
cess by producing an instance of the Cipher concept class
that uses the DES algorithm:

Cipher cryptObject = Cipher.getInstance("DES");

One major advantage of this set up is that to change the
cryptographic algorithm used you need only change the ar-
gument in the getInstance() method. We still have not
explained how to implement the algorithms called via these
factory methods. This implementation is accomplished by
software vendors, or security providers, who write the im-
plementations of the algorithms that plug into the JCA.
These implementations are collectively called the Java Cryp-
tographic Extension, JCE. The provider used in this paper
was an Austrian implementation called IAIK. Details ap-
pear in [4]. The availability of this resource was one of the
main reasons for implementing the attack in Java.

4. THE KEY-COLLISION ATTACK
Biham’s attack involves the following important concepts:

1. A known plaintext header. Many encrypted messages
begin with a known header. For example postscript
files begin with %!PS-Adobe-2.0.

2. The Birthday Paradox. A full account of the Birth-
day Paradox appears in [7]. Very simply the Birthday
Paradox is a statistical result which shows that given
some property which has n possible values and given
two sets, each of about sqrt(n) entries selected ran-
domly from the n entities, there is a high probability
that some entity in the first set has the same value as
some entity in the second set. Applying this to our
attack, n = 256 and it is only necessary to have two
collections of 228 ciphertexts to have a high probability
of finding a matching pair of ciphertexts. It may be
instructive to enumerate here. The Birthday Paradox
effectively reduces the amount of ciphertexts needed
from 72,057,594,037,927,936 to 268,435,456. This makes
implementation a whole lot easier and faster.

The Biham attack can be summarized as follows:

1. We encrypt the known plaintext header 228 times, each
time with a different randomly chosen DES key. These
(ciphertext,key) pairs should then be stored in an
appropriate data structure.

2. We then compare incoming ciphertexts of the same
plaintext header, encrypted with an unknown key, with
the ciphertexts above.

3. When a match is found the key value corresponding to
the matching ciphertext is returned.

It is expected that a key will be found while it is still in
use and that it can be used to decrypt the message or even
substitute a message favorable to the attacker.

5. IMPLEMENTATION OF THE ATTACK
The first requirement of the attack is the generation of

228 ciphertexts using randomly generated DES keys. This
seems like a lot of work but Java is ideally suited to the
task. Using the Key and KeyGenerator concept classes Java
generates random DES keys as follows,

KeyGenerator keyGen = KeyGenerator.getInstance("DES");

keyGen.init(new SecureRandom());

Key key = keyGen.generateKey();

These keys are then fed into the DES Cipher to encrypt a
known plaintext header. The header chosen was the postscript
header %!PS-Ado which was 64 bits long. These ciphertexts
need to be stored efficiently and this is discussed in the next
section. Incoming ciphertexts then needed to be compared
with the stored ciphertexts. Again this process is discussed
in the next section. In order to save space we did not store
DES Key objects but simply stored their values as Long inte-
ger objects. This caused another problem because when the
key was eventually found it needed to be converted into a
DES Key object and a simple constructor did not exist. This
is because DES keys are designed to be generated randomly
and not from specific values. The problem was solved by
utilizing the lesser known KeySpec and SecretKeyFactory

concept classes. Firstly the Long key is converted to a byte
array then the concept classes are invoked and finally a cast
to a Key object is performed,

KeySpec spec =

new DESKeySpec(ByteFormOfKeyValue);

SecretKeyFactory desFactory =

SecretKeyFactory.getInstance("DES");

SecretKey thisSecretKey =

desFactory.generateSecret(spec);

Key thisKey = (Key)thisSecretKey;

This Key object can now be passed to a DES Cipher object
in order to encrypt or decrypt a message.

6. STORAGE, SPACE AND SEARCHING CON-
SIDERATIONS

In this section we discuss how to overcome the problem of
storing and searching efficiently a set of 228 (ciphertext,key)

pairs. Each ciphertext string was 8 bytes long and each DES
key object was 212 bytes. To store this set without any op-
timizations would require 228× (8 + 212) ≈ 55 GB of space.
Clearly we needed to reduce this load. The first optimiza-
tion was to extract the key value from the key object as
described above.

The next optimization was to pick an appropriate data
structure to store the data. For various reasons, including
the searching complexity of , O(1) [8], the data structure
chosen was a Hashtable. Java imposes a limit on the number
of entries a Hashtable can have so various storage schemes
were tested and refined until the following approach was
adopted,

1. The (ciphertext,key) pairs were stored in 214 dif-
ferent Hashtables.

2. During pair generation a number of Hashtables were
kept in memory, and filled up until their combined size
caused the system to slow significantly, (222 pairs was
the limit).

3. Each ciphertext and key value was stored in a particu-
lar Hashtable. The Hashtable chosen was the one with
the same name as the hashCode() mod 16384 (214),
of the ciphertext. Each Hashtable was in turn stored
in an array of Hashtables indexed by its name. This
strategy was chosen as it was quick to implement and
promised to give an even spread of pairs between the
different Hashtables. Initial testing showed this to be
the case.

4. When a total of 222 pairs were generated, the partly
filled Hashtables were written to disk into files whose
filenames contained the index of the Hashtable in its
array. The idea was that when examining incoming
ciphertexts, the hashCode of each ciphertext would be
obtained, and mod 16384 of this would be the index.
Then the Hashtable file whose name contained this in-
dex was read in from the hard disk, the Hashtable ob-
ject extracted and searched for the ciphertext in ques-
tion. This meant that for each incoming ciphertext
only one file needed to be read in and searched, keep-
ing the constant time complexity advantage of using
Hashtables.

5. Because testing has shown that only 222 pairs could
be generated on each run of the program before writ-
ing to disk, the process was repeated 64 times storing
the Hashtable files to a different directory each time.
These mini-Hashtable files were then merged into 214

Hashtable files each containing an average of 214 pairs,
giving a total of 228 (ciphertext,key) pairs.

6. Testing showed that the Multiple Hashtables Approach
was feasible although the generation process took about
36 hours. This does not affect the timing of the attack
as this process can be done off-line before the attack
commences.

7. This approach also had significant space savings with
the space required at the end of the process to store
the Hashtables being approximately 7.5 GB. This com-
pares very favorably with the initial estimate of 55 GB.

In order to test the attack we generated and stored 228

ciphertexts generated with ”unknown” keys. These ci-
phertexts simulated a stream of ciphertexts being cap-
tured by an attacker. Again to improve performance
the ciphertexts were stored as follows; 214 arrays were
set up and named from 000000 to 016383. As each
ciphertext was generated its hashCode mod 16384 was
calculated and it was stored in the appropriate array.
These arrays were then sent to 214 files named after
the hashCode value.

We can now describe the searching process.
Each in turn of the 214 simulated unknown ciphertext

files were read into memory at random. Each file contained
an array of ciphertexts whose hashCode mod 16384 was the
same.The name of the ciphertext array file, was then used to
open the corresponding Hashtable file. The Hashtable was
searched for each ciphertext in turn to the end of the array.
If no match was found a new array file was read in from disk
and the process repeated until all 214 arrays were searched.
Thus the number of times a Hashtable file needed to be read
in from memory was reduced from 228 to 214. This process
resulted in an improved estimated time for searching for the
key from 6.2 years down to 2.3 hours.

The results of this test are encouraging. The test was
performed on a Pentium 4 machine with clock speed 2.5

GHz, 1 GB of RAM, and a 60 GB hard disk. During testing
a key was found in 1.5 hours on average. The whole search
of all arrays took an average of 2.3 hours.

7. CONCLUSIONS AND FUTURE WORK
The speed of the program is not earth shattering when

compared with existing attacks on DES using dedicated
hardware. However, the fact that it was possible in a rea-
sonable timescale is due in part to the Biham attack and
in part to strategies and techniques developed during the
course of the project, many of which grew out of its inher-
ent difficulties.

The Biham algorithm was successfully implemented in
Java, with the help of the JCA. Biham’s assertion that a
key could be found by a comparison of 228 ciphertexts with
a stored table containing 228 (ciphertext, key) pairs has
been verified in Java . The fact that the algorithm can be
implemented in Java and a key found in an expected average
time of just over an hour is encouraging for a cryptanalyst.

It is worrying for anyone using DES to encrypt sensitive
information or data. As Biham explains in his paper, nu-
merous files of the same type are commonly stored on mod-
ern computers with large hard disks. If these files are of
the same type they are likely to have the same file header.
Using DES to encrypt these files with different keys can in
fact help an attacker to find a key as shown in this paper,
rather than increasing their security as was previously be-
lieved. Thus DES cannot be described as a secure way to
encrypt data for storage under these circumstances.

One might argue that finding a single key which depends
on receiving messages transmitted over a network, encrypted
with 228 different keys, will be of limited use due to the
time necessary to receive these messages. This is true in the
implementation described here. However, by listening over
a large enough network like the Internet, and forwarding
messages of a certain type to a central location, it should be
possible to collect 228 ciphertexts in a short space of time.
During this time they can be sorted into arrays as described
in this paper ready for comparison with the corresponding
Hashtable. Generation of the Hashtables is not a limiting
factor as they can be pre-computed. Indeed given a number
of attackers cooperating over a network, tables containing a
total of more than 228 pairs can be generated easily, with
the result that fewer ciphertexts are needed for a successful
attack.

This implementation can be applied equally to modern
variants of DES including AES, albeit with greater com-
plexity. The architecture of JCA makes this task relatively
simple. The portability of Java makes this implementation
suitable for a distributed attack over many machines that
could considerably speed up the process.

8. REFERENCES
[1] Biham, E. How to decrypt or even substitute

DES-encrypted messages in 228 steps, Information
Processing Letters 84, (2002), 117-124.

[2] Electronic Frontier Foundation Cracking DES-Secrets
of Encryption Research, Wiretap Politics and Chip
Design, O’Reilly, 1998.

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.
DesignPatterns: Elements of Reusable Software,
Addision -Wesley, 1995.

[4] IAIK documentation
http://jcewww.iaik.at/products/jce/documentation
/javadoc/index.html

[5] Knudsen, B. Java Cryptography, O’Reilly, 1998.

[6] National Bureau of Standards Data Encryption
Standard, U.S. Department of Commerce, FIPS
pub81, (1980)

[7] Stallings, W. Cryptography and Network Security,
Prentice Hall, 2003.

[8] Watt,D., Brown,D. Java Collections, Wiley, 2001.

