In this masterpiece, Jared Diamond sets himself the task of answering the most obvious, the most important and yet the most difficult question about human history - why did it unfold so differently for different populatons on the continents and islands of the earth?
It is the finest book I have ever read, brimming with insight and knowledge, and delivered with style. This page is a tribute and introduction to the themes of the book, which Diamond has also expounded in various articles and lectures.
# THE FATE OF HUMAN SOCIETIES
History followed different courses for different peoples because of differences among peoples' environments, not because of biological differences among peoples themselves.
1. The Question
2. The Method
- A Natural Experiment of History
3. The Arrow of Disease
4. Isolation
& Communication
5. Around The World
in Five Chapters
6. The Future of Human
History as a Science
I've set myself the modest task of trying to explain the broad pattern of human history, on all the continents, for the last 13,000 years. Why did history take such different evolutionary courses for peoples of different continents?
My theme, then, is
the different courses of history for peoples of different continents.
As we all know, Eurasians,
especially peoples of Europe and eastern Asia, have spread around the globe,
to dominate the modern world in wealth and power. Other peoples, including
most Africans, survived, and have thrown off European domination but remain
far behind in wealth and power. Still other peoples, including the original
inhabitants of Australia, the Americas, and southern Africa, are no longer
even masters of their own lands but have been decimated, subjugated, or
exterminated by European colonialists. Why did history turn out that way,
instead of the opposite way?
Why weren't Native
Americans, Africans, and Aboriginal Australians the ones who conquered
or exterminated Europeans and Asians?
This question can easily
be pushed back one step further. By the year A.D. 1500, the
approximate year when
Europe's overseas expansion was just beginning, peoples of the different
continents already differed greatly in technology and political organization.
Much
of Eurasia and North Africa was occupied then by Iron Age states and empires,
some of them on the verge of industrialization. Two Native American peoples,
the Incas and Aztecs, ruled over empires with stone tools and were just
starting to experiment with bronze. Parts of sub-Saharan Africa were divided
among small indigenous Iron Age states or chiefdoms. But all peoples of
Australia, New Guinea, and the Pacific islands, and many peoples of the
Americas and sub-Saharan Africa, were still living as farmers or even still
as hunter/gatherers with stone tools.
Obviously, those differences
as of A.D. 1500 were the immediate cause of the modern
world's inequalities.
Empires with iron tools conquered or exterminated tribes with stone tools.
But how did the world evolve to be the way that it was in the year A.D.
1500?
This question, too
can be easily pushed back a further step, with the help of written
histories and archaeological
discoveries. Until the end of the last Ice Age around 11,000 B.C., all
humans on all continents were still living as Stone Age hunter/gatherers.
Different rates of development on different continents, from 11,000 B.C.
to A.D. 1500, were what produced the inequalities of A.D. 1500. While Aboriginal
Australians and many Native American peoples remained Stone Age hunter/gatherers,
most Eurasian peoples, and many peoples of the Americas and sub-Saharan
Africa, gradually developed agriculture, herding, metallurgy, and complex
political organization. Parts of Eurasia, and one small area of the Americas,
developed indigenous writing as well. But each of these new developments
appeared earlier in Eurasia than elsewhere.
So, we can finally
rephrase our question about the evolution of the modern world's
inequalities as follows.
Why did human development proceed at such different rates on
different continents
for the last 13,000 years? Those differing rates constitute the broadest
pattern of history, the biggest unsolved problem of history, and my subject
today.
To appreciate how far from obvious is the answer to this question, imagine that an alien historian from Outer Space had visited the Earth 50,000 years ago. If that visitor had been asked to predict which continent's people would develop technology most rapidly, and who would conquer whom, what do you think that the alien would have predicted? The alien might well have answered "Africa," because human history in Africa had a six-million-year head start over history on the other continents. Or, the alien might instead have predicted "Australia," the continent with perhaps the earliest evidence of anatomically and behaviorally fully modern humans, and the continent with by far the earliest evidence for human use of watercraft. The visitor would surely have written off Europe, where Homo sapiens still hadn't even arrived as of 50,000 years ago. To that visitor, the state of the world as we see it today would be incomprehensible. What were the reasons for the unexpected outcome?
- Introduction from a UCLA Lecture which summarises the book
Read Chapter One of the book: "Up To The Starting Line" [external]
# THE METHOD - A NATURAL EXPERIMENT OF HISTORY
Moriori and Maori history constitutes a brief , small-scale natural experiment that tests how environments affect human societies. ...Of course, such purposeful experiments cannot be carried out on human societies. Instead, scientists must look for 'natural experiments', in which something similar befell humans in the past. (p54)
Such an experiment
unfolded during the settlement of Polynesia. Scattered over the Pacific
Ocean beyond New Guinea are thousands of islands differing greatly in area,
isolation, elevation, climate, productivity and biological resources.
For most of human
history those islands lay far beyond the reach of watercraft. Around 1200
BC a group of farming, fishing, seafaring people from the Bismarck Archipelago
north of New Guinea finally succeeded in reaching some of those islands.
Over the following centuries their descendants colonized virtually every
habitable scrap of land in the Pacific.
The process was mostly
complete by 500 AD, with the last few islands settled around 1000 AD.
Thus, within a modest time span, enormously diverse island environments were settled by colonists all of whom stemmed from the same founding populations. The ultimate ancestors of all modern Polynesian populations shared essentially the same culture, language, technology, and set of domesticated plants and animals. Hence Polynesian history constitutes a natural experiment allowing us to study human adaptation. (p55)
What can we learn from
all of Polynesia about environmental influences on human societies?
Polynesian societies
ran the gamut from fairly egalitarian village societies to some of the
most stratified societies in the world, with many hierarchially ranked
lineages and with chief and commoner classes whose members married within
their own class. In political organization, Polynesian islands ranged from
landscapes divided into independent tribal or village units, up to multi-island
proto-empires that devoted standing military establishments to invasions
of other islands and wars of conquest. (p57)
How can all that variation be explained? Contributing to these differences among Polynesian societies were at least six sets of environmental variables among Polynesian islands: island climate, geological type, marine resources, area, terrain fragmentation and isolation. (p58)
Polynesian island societies differed greatly in their economic specialization, social complexity, political organization, and material products, related to differences in population size and density, related in turn to differences in island area, fragmentation, and isolation and in opportunities for subsistence and intensifying food production. All those differences among Polynesian societies developed, within a relatively short time and modest fraction of the Earth's surface, as environmentally related variations on a single ancestral society... In short Polynesia furnishes us with a convincing example of environmentally related diversification of human societies in operation. (p65)
The grimmest example of the role of germs in history is much on our minds this month, as we recall the European conquest of the Americas that began with Columbus’s voyage of 1492. Numerous as the Indian victims of the murderous Spanish conquistadores were, they were dwarfed in number by the victims of murderous Spanish microbes. These formidable conquerors killed an estimated 95 percent of the New World’s pre-Columbian Indian population.
Why was the exchange of nasty germs between the Americas and Europe so unequal? Why didn’t the reverse happen instead, with Indian diseases decimating the Spanish invaders, spreading back across the Atlantic, and causing a 95 percent decline in Europe’s human population? Similar questions arise regarding the decimation of many other native peoples by European germs, and regarding the decimation of would-be European conquistadores in the tropics of Africa and Asia.
The infectious diseases that visit us as epidemics share several characteristics. First, they spread quickly and efficiently from an infected person to nearby healthy people, with the result that the whole population gets exposed within a short time. Second, they’re "acute" illnesses: within a short time, you either die or recover completely. Third, the fortunate ones of us who do recover develop antibodies that leave us immune against a recurrence of the disease for a long time, possibly our entire lives. Finally, these diseases tend to be restricted to humans; the bugs causing them tend not to live in the soil or in other animals. All four of these characteristics apply to what Americans think of as the once more-familiar acute epidemic diseases of childhood, including measles, rubella, mumps, pertussis, and smallpox.
It is easy to understand why the combination of those four characteristics tends to make a disease run in epidemics. The rapid spread of microbes and the rapid course of symptoms mean that everybody in a local human population is soon infected, and thereafter either dead or else recovered and immune. No one is left alive who could still be infected. But since the microbe can’t survive except in the bodies of living people, the disease dies out until a new crop of babies reaches the susceptible age - and until an infectious person arrives from the outside to start a new epidemic.
A classic illustration of the process is given by the history of measles on the isolated Faeroe Islands in the North Atlantic. A severe epidemic of the disease reached the Faeroes in 1781, then died out, leaving the islands measles-free until an infected carpenter arrived on a ship from Denmark in 1846. Within three months almost the whole Faeroes population - 7,782 people - had gotten measles and then either died or recovered, leaving the measles virus to disappear once again until the next epidemic. Studies show that measles is likely to die out in any human population numbering less than half a million people. Only in larger populations can measles shift from one local area to another, thereby persisting until enough babies have been born in the originally infected area to permit the disease’s return.
To sustain themselves,
acute infections need a human population that is sufficiently numerous
and densely packed that a new crop of susceptible children is available
for infection by the time the disease would otherwise be waning. Hence
measles and other such diseases are also known as "crowd diseases."
Crowd diseases could
not sustain themselves in small bands of hunter-gatherers and slash-and-burn
farmers. the evolution of our crowd diseases could only have occurred with
the buildup of large, dense human populations, first made possible by the
rise of agriculture about 10,000 years ago, then by the rise of cities
several thousand years ago. Indeed, the first attested dates for many familiar
infectious diseases are surprisingly recent: around 1600 B.C. for smallpox
(as deduced from pockmarks on an Egyptian mummy), 400 b.c. for mumps, 1840
for polio, and 1959 for AIDS.
When the human population
became sufficiently large and concentrated, we reached the stage in our
history when we could at last sustain crowd diseases confined to our species.
But that presents
a paradox: such diseases could never have existed before. Instead they
had to evolve as new diseases. Where did those new diseases come from?
Evidence emerges from studies of the disease-causing microbes themselves. In many cases molecular biologists have identified the microbe’s closest relative. Those relatives also prove to be agents of infectious crowd diseases--but ones confined to various species of domestic animals and pets! Among animals too, epidemic diseases require dense populations, and they’re mainly confined to social animals that provide the necessary large populations. Hence when we domesticated social animals such as cows and pigs, they were already afflicted by epidemic diseases just waiting to be transferred to us.
How, then, does all
this explain the outcome of 1492--that Europeans conquered and depopulated
the New World, instead of Native Americans conquering and depopulating
Europe?
Part of the answer,
of course, goes back to the invaders’ technological advantages. European
guns and steel swords were more effective weapons than Native American
stone axes and wooden clubs. Only Europeans had ships capable of crossing
the ocean and horses that could provide a decisive advantage in battle.
But that’s not the whole answer. Far more Native Americans died in bed
than on the battlefield - the victims of germs, not of guns and swords.
Those germs undermined Indian resistance by killing most Indians and their
leaders and by demoralizing the survivors.
The role of disease
in the Spanish conquests of the Aztec and Inca empires is especially well
documented. In 1519 Cortés landed on the coast of Mexico with 600
Spaniards to conquer the fiercely militaristic Aztec Empire, which at the
time had a population of many millions. That Cortés reached the
Aztec capital of Tenochtitlán, escaped with the loss of "only" two-thirds
of his force, and managed to fight his way back to the coast demonstrates
both Spanish military advantages and the initial naïveté of
the Aztecs. But when Cortés’s next onslaught came, in 1521, the
Aztecs were no longer naive; they fought street by street with the utmost
tenacity. What gave the Spaniards a decisive advantage this time was smallpox,
which reached Mexico in 1520 with the arrival of one infected slave from
Spanish Cuba. The resulting epidemic proceeded to kill nearly half the
Aztecs. The survivors were demoralized by the
mysterious illness
that killed Indians and spared Spaniards, as if advertising the Spaniards’
invincibility. By 1618 Mexico’s initial population of 20 million had plummeted
to about 1.6 million.
In the century or
two following Columbus’s arrival in the New World, the Indian population
is estimated to have declined by about 95 percent. The main killers were
European germs, to which the Indians had never been exposed and against
which they therefore had neither immunologic nor genetic resistance. Smallpox,
measles, influenza, and typhus competed for top rank among the killers.
As if those were not enough, pertussis, plague, tuberculosis, diphtheria,
mumps, malaria, and yellow fever came close behind.
The one-sided exchange
of lethal germs between the Old and New worlds is among the most striking
and consequence-laden facts of recent history. Whereas over a dozen major
infectious diseases of Old World origins became established in the New
World, not a single major killer reached Europe from the Americas. The
sole possible exception is syphilis, whose area of origin still remains
controversial.
That one-sidedness
is more striking with the knowledge that large, dense human populations
are a prerequisite for the evolution of crowd diseases. If recent reappraisals
of the pre-Columbian New World population are correct, that population
was not far below the contemporaneous population of Eurasia. Some New World
cities, like Tenochtitlán, were among the world’s most populous
cities at the time. Yet Tenochtitlán didn’t have awful germs waiting
in store for the Spaniards. Why not?
The main reason becomes
clear, however, if we ask a simple question: From what microbes could any
crowd diseases of the Americas have evolved? We’ve seen that Eurasian crowd
diseases evolved from diseases of domesticated herd animals. Significantly,
there were many such animals in Eurasia. But there were only five animals
that became domesticated in the Americas: the turkey in Mexico and parts
of North America, the guinea pig and llama/alpaca (probably derived from
the same original wild species) in the Andes, the Muscovy duck in tropical
South America, and the dog throughout the Americas.
That extreme paucity
of New World domestic animals reflects the paucity of wild starting material.
About 80 percent of the big wild mammals of the Americas became extinct
at the end of the last ice age, around 11,000 years ago, at approximately
the same time that the first well- attested wave of Indian hunters spread
over the Americas. Among the species that disappeared were ones that would
have yielded useful domesticates, such as American horses and camels. Debate
still rages as to whether those extinctions were due to climate changes
or to the impact of Indian hunters on prey that had never seen humans.
Whatever the reason, the extinctions removed most of the basis for Native
American animal
domestication - and
for crowd diseases.
So on this 500th anniversary of Columbus’s discovery, let’s try to regain our sense of perspective about his hotly debated achievements. There’s no doubt that Columbus was a great visionary, seaman, and leader. There’s also no doubt that he and his successors often behaved as bestial murderers. But those facts alone don’t fully explain why it took so few European immigrants to initially conquer and ultimately supplant so much of the native population of the Americas. Without the germs Europeans brought with them - germs that were derived from their animals - such conquests might have been impossible.
- Excerpt from article for Discover magazine
For the last 10,000 years the Tasmanians represented a study of isolation unprecedented in human history except in science fiction novels. Here were 4,000 Aboriginal Australians cut off on an island, and they remained totally cut off from any other people in the world until the year 1642, when Europeans "discovered" Tasmania. What happened during those 10,000 years to that isolated 4,000 person society? And what about nearby Flinders Island, which originally supported a population of 200 cut-off Aboriginal Australians?
When Europeans discovered
Tasmania in the 17th century, it had technologically the simplest, most
"primitive" human society of any society in the modern world. Native Tasmanians
could not light a fire from scratch, they did not have bone tools, they
did not have multi-piece stone tools, they did not have axes with handles,
they did not have spear-throwers, they did not have boomerangs, and they
did not even know how to fish. What accounts for this extreme simplicity
of Tasmania society? Part of the explanation is that during the 10,000
years of isolation, the Aboriginal Australians, who numbered about 250,000,
were inventing things that the isolated 4,000 Tasmanians were not inventing,
such as boomerangs. Incredibly, though, archeological investigations have
shown one other thing: during those
10,000 years of isolation,
the Tasmanians actually lost some technologies that they had carried from
the Australian mainland to Tasmania. Notably, the Tasmanians arrived in
Tasmania with bone tools, and bone tools disappear from archeological record
about 3,000 years ago. That's incredible, because with bone tools you can
have needles, and with needles you can have warm clothing. Tasmania is
at the latitude of Vladivostok and Chicago: it's snowy in the winter, and
yet the Tasmanians went about either naked or just with a cape thrown over
the shoulder.
How do we account for these cultural losses and non-inventions of Tasmanian society? Flinders Island was even more extreme - that tiny society of 200 people on Flinders Island went extinct several millenia ago. Evidently, there is something about a small, totally isolated human society that causes either very slow innovation or else actual loss of existing inventions. That result applies not just to Tasmania and Flinders, but to other very isolated human societies. There are other examples. The Torres Strait islanders between Australia and New Guinea abandoned canoes. Most Polynesian societies lost bows and arrows, and lost pottery. The Polar Eskimos lost the kayak, Dorset Eskimos lost dogs and bow drills, and Japan lost guns.
When firearms arrived in Europe, there were European princes who similarly banned firearms, and there were European princes who banned printing, but you can guess what happened. When a prince in the middle of Europe banned firearms, within a short time the prince next door who did not ban firearms either walked in and conquered, or else the prince who banned firearms quickly realized his or her mistake and reacquired firearms from next door. The banning of the guns could work only in isolated Japan, where there were no neighbors as a threat, and where there were no neighbors from whom to reacquire the technology.
So these stories of isolated societies illustrate two general principles about relations between human group size and innovation or creativity. First, in any society except a totally isolated society, most innovations come in from the outside, rather than being conceived within that society. And secondly, any society undergoes local fads. By fads I mean a custom that does not make economic sense. Societies either adopt practices that are not profitable or for whatever reasons abandon practices that are profitable. But usually those fads are reversed, as a result of the societies next door without the fads out-competing the society with the fad, or else as a result of the society with the fad, like those European princes who gave up the guns, realizing they're making a big mistake and reacquiring the fad. In short, competition between human societies that are in contact with each other is what drives the invention of new technology and the continued availability of technology.
The other lesson that
I would like to draw from history concerns what is called the optimal fragmentation
principle. Namely, if you've got a human group, is that group best organized
as a single large unit, or is it best organized as a number of small units,
or is it best fragmented into a lot of small units?
...I propose to get
some empirical information about this question by comparing the histories
of China and Europe. Why is it that China in the Renaissance fell behind
Europe in technology?
...China was also on the verge of building powerful water-powered machinery before the Industrial Revolution in Britain, but the emperor said "Stop," and so that was the end of the water-powered machinery in China. In contrast, in Europe there were princes who said no to electric lighting, or to printing, or to guns. And, yes, in certain principalities for a while printing was suppressed. But because Europe in the Renaissance was divided among 2,000 principalities, it was never the case that there was one idiot in command of all Europe who could abolish a whole technology. Inventors had lots of chances, there was always competition between different states, and when one state tried something out that proved valuable, the other states saw the opportunity and adopted it. So the real question is, why was China chronically unified, and why was Europe chronically disunified? Why is Europe disunified to this day?
The answer is geography.
Just picture a map of China and a map of Europe. China has a smooth coastline.
Europe has an indented coastline, and each big indentation is a peninsula
that became an independent country, independent ethnic group, and independent
experiment in building a society: notably, the Greek peninsula, Italy,
the Iberian peninsula, Denmark, and Norway/Sweden. Europe had two big islands
that became important independent societies, Britain and Ireland, while
China had no island big enough to become an independent society until the
modern emergence of Taiwan. Europe is transected by mountain ranges that
split up Europe into different principalities: the Alps, the Pyrenees,
Carpathians - China does not have mountain ranges that transect China.
In Europe big rivers flow radially - the Rhine, the Rhone, the Danube,
and the Elbe - and they don't unify Europe. In China the two big rivers
flow parallel to each other, are separated by low-lying land, and were
quickly connected by canals.
For those geographic
reasons, China was unified in 221 B.C. and has stayed unified most of the
time since then, whereas for geographic reasons Europe was never unified.
Augustus couldn't do it, Charlemagne couldn't do it, and Napoleon and Hitler
couldn't unify Europe. To this day, the European Union is having difficulties
bringing any unity to Europe.
- Excepts from lecture "A Natural History Of Wealth"
How Africa Became Black.
An Empire of Uniformity : How China Became Chinese.
Just who are the Japanese?
Paradises Lost : Easter Island & Pitcairn Island.
10,000 years of Solitude : Tasmania
# REVIEWS
~
# THE FUTURE OF HUMAN HISTORY AS A SCIENCE
History is classified as a social science, which is considered not quite scientific. But let’s remember the etymology of the world science. It’s not derived from a Latin word that meant ‘replicated laboratory experiments carried out by little men wearing white lab coats’, instead the etymology of our word science is the Latin word sciential which means knowledge.
In science we seek knowledge by whatever methodologies are available and appropriate. There are many fields that nobody hesitates to consider science even though replicated laboratory experiments in those fields would be immoral or illegal or impossible. For example astronomers cannot turn Aldebaron or Betelgeuse on, increase the luminocity of Sirius and maintain other stars as unmanipulated controls. Geologists can’t start a glacier here and stop an ice age over there, and palaeontologists cannot experiment with designing a new set of dinosaurs and then exterminating them again. Nevertheless astronomers, and geologists and palaeontologists have still gained considerable insight into their historical fields by other means. And so we should surely be able to understand human history, because introspection and preserved writings give us far more insight into the ways of past humans than we shall ever have into the ways of past dinosaurs.
For that reason I’m optimistic that we can eventually arrive at convincing explanations for these broadest patterns of human history.
# MISC QUOTES
Human history, as something separate from the history of animals, began in Africa about 7 million years ago. Around that time, a population of African apes broke up into several populations, of which one proceeded to evolve into modern gorillas, a second into the two modern chimps, and the third into humans. The gorilla line apparently spilt off slightly before the split between the chimp and the human lines. (p36)
The near-simultaneous
disappearance of so many large species raises an obvious question: what
caused it? An obvious possible answer is that they were killed off or else
eliminated indirectly by the first arriving humans... The critics respond
with a counter-theory: perhaps the giants succumbed instead to a change
in climate, such as a severe drought on the already chronically dry Australian
continent. Personally, I can't fathom why Australia's giants should have
survived innumerable droughts in their tens of millions of years of Australian
history, and then have chosen to drop dead simultaneously (at least on
a time scale of millions of years) precisely and coincidentally when the
first humans arrived. The giants became extinct not only in dry central
Australia but also in drenching wet New Guinea and southeastern Australia.
They became extinct in every habitat without exception, from deserts to
cold rain forest and tropical rain forest. Hence it seems to me most likely
that the giants were indeed exterminated by humans, both directly (by being
killed for food) and indirectly (as the result of fires and habitat modification
caused by humans). But regardless of whethe rthe overkill hypothesis or
climate hypothesis proves correct, the disappearance of all of the big
animals in Australia / New Guinea had heavy consequences for subsequent
human history.
(pp 42-44)
Much of human history has consisted of unequal conflicts between the haves and the have-nots: between peoples with farmer power and those without it, or between those who acquired it at different times.
The peoples of areas with a head start on food production thereby gained a head start on the path leading to guns, germs and steel. The result was a long series of collisions between the haves and have-nots of history.
Those few peoples who remained hunter-gathers into the 20th century escaped replacement by food producers because they were confined to areas not fit for food production, especially deserts and Arctic regions.
In a traditional New Guinea society, if a New Guinean happened to encounter an unfamiliar New Guinean while both were away from their respective villages, the two engaged in a long discussion of their relatives, in an attempt to establish some relationship and hence some reason why the two should not attempt to kill each other. (p272)
The official religions
and patriotic fervor of many states make their troops willing to fight
suicidally. The latter willingness is one so strongly programmed into us
citizens of modern states, by our schools and churches and governments,
that we forget what a radical break it makes with previous human history.
Naturally, what makes
patriotic and religious fanatics such dangerous opponents is not the deaths
of the fanatics themselves, but their willingness to accept the deaths
of a fraction of their number in order to annihilate or crush their infidel
enemy. Fanaticism in war, of the type that drove recorded Christian and
Islamic conquests, was probably unknown on Earth until chiefdoms and especially
states emerged within the last 6,000 years. (pp 281-282)
It is not the case
that societies on the different continents were comparable to
each other until 3000
BC, whereupon western Eurasian societies suddenly developed writing and
began for the first time to pull ahead in other respects as well. Instead,
already by 3000 BC, there were Eurasian and North African societies not
only with incipient writing but also with centralised state governments,
cities, widespread use of tools and weapons, use of domesticated animals
for transport and traction and mechanical power, and reliance on agriculture
and domesticated animals for food.
Throughout most or
all parts of other continents, none of these things existed at that time;
some but not all of them emerged later in parts of the Native Americas
and sub-Subharan Africa, but only over the course of the next five millennia;
and none of them emerged in Aboriginal Australia. That should already warn
us that the roots of western Eurasian dominance in 1500 AD lie in the preliterate
past before 3000 BC.
#