Integration Types for Leaving cert. Honours Mathematics
Integration Types
The following are 20 integration types essential for question 8 on both papers I and II of the Leaving Certificate Honours Mathematics Examination.
1. y =
ò(axn + bxn-1 + cxn-2 +....)dx y = ò(2x3 + 4x2 + 6x)dx
2. y =
ò(2x + 3)4dx (Let u = 2x + 3)
3.
(Let u = x2 + 1)
4. y =
ò(2x + 1)(2x - 4)3dx (Let u = 2x – 4 and find a value for 2x +1 in terms of u)
5. y =
òsin mx dx or òcos mx dx or .... (let u = mx)
6. y =
òsin 3x cos x dx .....(change to sum) note also òsin2xcos2x dx
7. y =
òsin2x dx = ò˝ ( 1- cos 2x)dx or y = òcos2x dx
8. y =
òsin2xcos3x dx... (Cos3x = cos x (1 - sin2x))
9. y =
òenxdx (Let u = nx)
10.
e.g. or y = ò tan x dx …….solution in the form loge f(x) + c(let u = denominator)
11.
Divide numerator by denominator
12.
(Let u = logex )also (Let )
13.
() (Let u = 1+ex)
14. y =
ò 2x dx let u = 2x then logeu = x loge2 differentiating giveswhich implies that dx substitute ....
15.
is a sin-1x problem
16.
becomes (tan-1 function) (Let u = x –1)
17.
(Let u = x + 1) (sin
18.
(Let )
19.
and (Let u = sin x) (tan-1 function)
Integration by parts is examinable on paper II in the option section:
20. y =
òx2 logex dx; y =òxcos2x dx; y = òx2e4xdx; y = òx2sinx dx; y = òe2xsinx dx By parts.
Remember, the order of substitution is given by: L I A T E; Logs, indices, algebra, trigonometry and exponentials
©
T O’Sullivan A Phabolous FIsics Production™ January 1994