»»» Thesis MSc Bibliography |
5.1 Bibliography [1] Clarke L.J. and Lyons C. (1962), Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad. Sci. 102, 29-45
[2] Braatz J.A., Hua D.T. and Princler G.L., (1984) A solid-phase, enzyme-linked immunosorbent assay for a human lung tumour-associated antigen, J. Natl. Cancer. Inst., 72, 841-846.
[3] Ter-Avest A.R., Van-Steenis G., Osterhaus A.D.M.E., (1987) Comparison of an enzyme-linked immunosorbent assay and counter-current electrophoresis for the detection of bovine serum albumin in virus vaccines, J. Biol. Stand., 15, 245-250
[4] Takahashi T., Ohara T., Tanaka H., Kurihara K. and Shimizu K., (1996) Detection of apple chlorotic leafspot virus in apple leaves by enzyme-linked immunosorbent assay (ELISA), Research Bulletin of the Plant Protection Service Japan, 0(32), 103-109
[5] Cassells N.P., Craston D.H., Hand C.W., Baldwin D., (1996) Development and validation of a non-isotopic immunoassay for the detection of LSD in human urine, J. Anal. Toxicol., 20, 409-415
[6] Wang J. and Lin M. S., (1988), Mixed plant tissue-carbon paste electrode, Anal. Chem., 60, 1545
[7] Chut S.L., Li J. and Tan S.N., (1997) A mediated turnip-tissue based amperometric hydrogen peroxide biosensor, Anal. Lett., 30, 1993-1998
[8] MacDonald I.R., Kenna F.M., and Murrell J.C., (1995) Detection of methanotrophic bacteria in environmental samples with the PCR, Applied and Env. Microbio., 61, 116-121 [9] Blackburn G.F., Shah H.P., Kenten J.H. Leland J., Kamin R.A. Link J., Peterman J., Powell M.J., Shah A., Talley D.B., Tyagi S.K., Wilkins E., Wu T. and Massey R.J., (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 37, 1534-1539
[10] Wang J., Rivas G., Luo D., Cai X., Valera F.S. and Dontha N., (1996) DNA-modified electrode for the detection of aromatic amines, Anal. Chem., 68, 4365-4369
[11] Belli S.L. and Rechnitz G.A., (1986) Prototype potentiometric biosensor using intact chemoreceptor structures, Anal. Lett., 19, 403-419
[12] Eldefrawi M.E., (1989) Biosensors symposium, Chapel Hill NC, 7-9
[13] Meruva R.K. and Meyerhoff M.E., Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide, Biosens. Bioelectr., 13, 201-212
[14] Shul'ga A.A., Gibson T.D.,(1994) Alternative microbiosensor for hydrogen peroxide based on an enzyme field-effect transistor with a fast response, Anal. Chim. Acta, 296, 163-170
[15] Kelly S., Compagnone D. and Guilbault G.G., (1998) Amperometric immunosensor for lactate dehydrogenase LDH-1, Biosens. Bioelectr., 13, 173-180
[16] Villarta R.L., Cunningham D.D., Guilbault G.G., (1991) Amperometric enzyme electrodes for the determination of L-glutamate, Talanta, 38, 49-56
[17] Elmosallamy M.A.F. and Mohamed R.A., (1997) A conductimetric system based on polyaniline for determinations of ammonia in fertilisers, Anal. Lett., 30, 2189-2209
[18] Burgess L.W., (1995) Absorption based sensors, Sensors and Actuators B, 29, 10-15
[19] Li X. and Ronenweig Z., (1997) A fibre optic sensor for rapid analysis of bilirubin in serum, Anal. Chim. Acta, 353, 263-273
[20] Atwater J.E., Akse J.R., DeHart J. and Wheeler R.R., (1997) Enzymatic determination of ethanol using "reagentless" electrocatalysed luminol chemiluminescence, Anal. Lett., 30, 1445-1454
[21] Suleiman A.A., Villarta R.L., Guilbault G.G., (1993) Flow injection analysis of glucose by fibre optic chemiluminescence measurement, Analytical Letters, 26, 1493-1503
[22] Kulmala S., Ala-Kleme T., Kulmala A, Papkovsky D. and Loikas K., (1998) Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminium electrodes, In Press.
[23] Blum L.J., Gautier S.M., Berger A., Michel P.E. and Coulet, P.R., (1995) Multicomponent organised layers for fibre-optic luminescent sensors, Sensors and Actuators B, 29, 1-9
[24] Michel P.E., Gautier S.M., Blum, L.J., (1996) Effect of compartmentalisation of the sensing layer on the sensitivity of a multienzyme-based bioluminescent sensor for L-lactate, Anal. Lett., 29, 1139-1155
[25] Littig J.S. and Nieman T.A., (1992) Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection, Anal. Chem, 64, 1140-1144
[26] Leland J.K. and Powell M.J., (1990) Electrogenerated chemiluminescence: An oxidative-reduction type ECL reaction sequence using tripropyl amine, J. Electrochem. Soc., 137, 3127-3131
[27] Cepria G. and Castillo J.R., (1997) Surface plasmon resonance detection: Alternative to refractive index detection in HPLC, J. Chromatogr. A, 759, 27-35
[28] Harris R.D. and Wilkinson J.D., (1995) Waveguide surface plasmon resonance sensors, Sensors and Actuators B, 29, 261-267
[29] Konig B, Gratzel, M., (1994) A novel immunosensor for Herpes viruses, Anal. Chem, 66, 341-344
[30] Guilbault G.G., (1983) Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector, Anal. Chem, 55, 1682-1684
[31] Sauerbrey G.Z., (1959) Use of a quartz crystal vibrator for weighing thin films on a microbalance, Z. Phys, 155, 206
[32] Stefuca V., Welwardova A. and Gemeiner P., (1997) Flow microcalorimeter auto-calibration for the analysis of immobilised enzyme kinetics, Anal. Chim. Acta, 355, 63-67
[33] Popescu I.C., Zetterberg G., Gorton L., (1995) Influence of graphite powder, additives and enzyme immobilisation procedures on a mediatorless HRP-modified carbon paste electrode for amperometric flow-injection detection of hydrogen peroxide, Biosens-Bioelectron., 10, 443-461
[34] Jogie S., Narinesingh D. and Ngo T.T., (1998) Aza-arenophilic gels as supports for the reversible immobilisation of enzymes-bioanalytical applications, Anal. Lett., 31, 543-553
[35] Shin M. and Kim H., (1996) Electrochemical characterisation of polypyrrole/glucose oxidase biosensor: Part 1. Influence of enzyme concentration on the growth and properties of the film, Biosens. Bioelectron., 11, 161-169
[36] Malitesta C., Palmisano F., Torsi L. and Zambonin R.G., (1990) Glucose fast-response amperometric sensor based on glucose oxidase immobilised in an electropolymerised poly(o-phenylenediamine) film, Anal. Chem., 62, 2735-2740
[37] McArdle F.A. and Persaud C.K., (1993) Development of an enzyme based biosensor for atrazine detection, Analyst, 118, 419
[38] Hyndman D., Burrell, R., Lever, G. and Flynn, (1992) Protein immobilisation to alumina supports, Biotechnol. Bioeng., 40, 1328-1336
[39] Ortega F., Dominguez E., Burestedt E., Emneus J., Gorton L. and Marko-Varga G., (1994) Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds, J. Chromatogr. A, 675, 65-78
[40] Lu B., Smyth M.R., Quinn J., Bogan D. and O'Kennedy R., (1996) Development of a regenerable amperometric immunosensor for 7-hydroxycoumarin, Electroanalysis, 8, 619-622
[41] AOAC inc. AOAC Official Methods of Analysis, 16th ed. Helrich, K., Ed.; AOAC; Arlington, VA, Method 994.12
[42] Sanz M.A., Castillo, G. and Hernandez, A, (1996) Isocratic high performance liquid chromatographic method for quantitative determination of lysine, histidine and tyrosine in foods, J. Chromatogr. A 719, 195-201
[43] Fernandez-Trapiella A.C., (1990) Quantitative analysis of methionine, cysteine and lysine in feeds by reverse-phase liquid chromatography using pre-column dervatisation with 9-fluoremylmethyl chloroformate: preliminary study, J. Assoc. Off. Anal. Chem., 73, 935-939
[44] Thio A.P. and Tompkins D.H., (1989) Regulatory approach to determination of lysine in feedstuffs by liquid chromatography with fluorescence detection via pre-column dansylation, J. Assoc. Off. Anal. Chem., 72, 609-613
[45] Jones, B.N. and Gilligan J.P., (1983) Pre-column derivatisation and reverse-phase high performance liquid chromatography of polypeptide hydrolysates and physiological fluids, Journal Chromatogr.,66, 471-482
[46] Skogberg D. and Richardson T., (1979) Preparation and use of an enzyme electrode for specific analysis of L-lysine in cereal grains, Cereal Chem., 56, 147-152
[47] Marconi E., Panfili G., Messia M.C., Cubadda R., Compagnone D. and Palleschi G., (1996) Fast analysis of lysine in food using protein microwave hydrolysis and an electrochemical biosensor, Anal. Lett., 29, 1125-1137
[48] Palleschi G., Bertocchi P., Compagnone D., Lavagnini .G., Moscone D. and Volpe G., Electrochemical biocells for continuous monitoring of amino acids in food, Biotech. Bioeng., 419-431
[49] Chen R.L.C., Lee M.H. and Matsumoto K., (1996), Selective biosensing of L-lysine by a low temperature flow injection technique using an immobilised lysine oxidase reactor, Anal. Sci., 12, 87-90
[50] Assoumani M.B., Nguyen N.P., Lardinois P.F., van Bree J., Baudichau A. and Bruyer D.C., (1990) Use of a lysine oxidase electrode for lysine determination in Maillard model reactions and in soybean meal hydrolyses, Lebensm.-Wiss. u.-Technol, 23, 322-327
[51] Romette J.L., Yang J.S., Kusakabe H. and Thomas D., (1983) Enzyme electrode for specific determination of L-lysine, Biotech. Bioeng., XXV, 2557-2556
[52] Townshend A., Almuaibed A.M., (1997) Flow injection amperometric and chemiluminescence individual and simultaneous determination of lysine and glucose with immobilised lysine oxidase and glucose oxidase, Anal. Chim. Acta, 338, 149-154
[53] Simonian A.L., Badalian I.E., Berezov T.T., Smirnova I.P. and Khaduev S.H., (1994) Flow injection amperometric biosensor based on immobilised L-lysine a-oxidase for L-lysine determination, Anal. Lett., 27, 2846-1860
[54] Elliott W.H., Elliott D.C., (1997) Biochemistry and molecular biology, Oxford University Press, P. 7
[55] Kusakabe H., Kodama K., Kuninaka A., Yoshino H., Misono H. and Sona K., (1980) A new antitumour enzyme, L-lysine a-oxidase form Trichoderma Viride, J. Biol. Chem., 255, 976-981
[56] Turner A.P.F. and Wilson R., (1992) Glucose oxidase: an ideal enzyme, Biosens. Bioelectron., 7, 165-185
[57] Villarta R.L., Palleschi G., Lubrano G.J., Suileman A.A. and Guilbault G.G., (1991) Amperometric aspartate electrode, Anal. Chim. Acta, 245, 63-69
[58] Gibson T.D., Hulbert J.N. and Woodward J.R., (1994) Preservation of shelf life of enzyme based analytical systems using a combination of sugars, sugar alcohols and cationic polymers or zinc ions, Anal. Chim. Acta, 279, 185-192
[59] Gibson T.D., Hulbert J.N., Parker S.M., Woodward J.R., Higgins I.J., (1992) Extended shelf-life of enzyme-based biosensors using a novel stabilisation system, Biosens-Bioelectron., 7, 701-708
[60] Gibson T.D., Higgins I.J., Woodward J.R., (1992) Stabilisation of analytical enzymes using a novel polymer - carbohydrate system and the production of a stabilised, single reagent for alcohol analysis, Analyst, 117, 1293-1297
[61] Sereikaite J., Iljaseviciene D., Dienys G., Danilcenko H. and Gavrilova V., (1993) Ascorbate Oxidase: Specificity and analytical application, Applied Biochemistry and Biotechnology, 43, 153-160
[62] Hart A.L., Cox H., Janssen D., (1996) Stabilisation of lactate oxidase in screen-printed enzyme electrodes, Biosens. Bioelectron., 11, 833-837
[63] Wu Y., Taylor K.E., Biswas N. and Bewtra J.K., (1998) A model for the protective effect of additive on the activity of horseradish peroxidase in the removal of phenol, Biosens. Bioelectron., 22, 315-322
[64] Wangsa J., Danielson, N.D. (1991) Enzymic determination of ethanol by flow-injection analysis using a Kel-F wax - carbon-paste electrode, Electroanalysis (NY), 3, 625-630
[65] Wang J., Liu J., Chen L. and Lu F., (1994) Highly selective membrane-free, mediator free glucose biosensor, Anal. Chem., 66, 3600-3603
[66] Wang J., Rivas G. and Chicharro M., (1996) Iridium dispersed carbon paste electrodes, Electroanalysis, 8, 434-437
[67] Wang J., Golden T. and Ruiliang Li., (1988) Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing systems. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity, Anal. Chem., 60, 1642-1645
[68] White S.F., Tothill I.E., Newman J.D. and Turner A.P.F., (1996) Development of a mass producible glucose biosensor and flow injection analysis system suitable for online monitoring during fermentation, Anal Chim Acta, 321, 165-172
[69] Yokoyama K., Nakajima K., Uchiyama S., Suzuki S., Suzuki M., Takeuchi T., Tamiya E. and Karube I., (1996) Mediated micro-glucose sensors using 2 micrometer platinum electrodes. Electroanalysis, 4, 859-864
[70] Murray R.W., Coury L.A., Johnson J.L. and Rajogopalan K.V., (1991) Electrochemical study of kinetics of electron transfer between synthetic electron acceptors and reduced molybdoheme protein sulphite oxidase, J. Phys. Chem., 95, 6034-6040
[71] Coury L.A., Oliver B.N., Egekeze J.O., Sosnoff C.S., Brumfield J.C., Buck R.P. and Murray R.W., (1990) Mediated, anaerobic voltammetry of sulphite oxidase, Anal. Chem., 62, 452-458
[72] Willner, I. and Riklin A., (1995) Glucose and acetyle sensing multilayer enzyme electrodes of controlled enzyme layer thickness, Anal. Chem., 67, 4118-4126
[73] Cass A.E.G., Davis G., Francis G.D., Hill H.A.O, (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem., 56, 667-671
[74] Katrlik J., Svorc J., Stred’ansky M. and Miertus S., (1998) Composite alcohol biosensors based on solid binding matrix, Biosens. Bioelectr., 13, 181-191
[75] Groom C.A., Luong J.H.T. and Thatipalmala R., (1995) Dual functionalities of 4-Aminodiphenylamin in enzymatic assay and mediated biosensor construction, Anal. Biochem., 231, 393-399
[76] Pandey P.C., Glazier S., Weetall H.H., (1993) An amperometric flow injection analysis biosensor for glucose based on graphite paste modified with tetracyanoquinodimethane, Anal. Biochem., 214, 233-237
[77] Loughran M.G., Hall J.M., Davidson V.L., Turner A.P.F., (1996) Ammonium ion requirement and stability of methanol dehydrogenase tetrathiafulvalene-tetracyanoquinodimethane (TTF.TCNQ) electrodes, Analyst, 121, 1711-1715
[78] Gunasingham H. and Tan, C, (1990) Carbon paste-tetrathiafulvalene amperometric enzyme electrode for the determination of glucose in flowing systems, Analyst, 115, 35-39
[79] Cosnier S. and Le Lous K., (1996) A new strategy for the construction of amperometric dehydrogenase electrodes based on laponite gel-methylene blue polymer as the host matrix, J. Electroanal. Chem., 406, 243-246
[80] Coury L.A., Yang L. and Murray R.W., (1993) Electrochemical study of the rate of activation of the molybdoheme protein sulphite oxidase by organic electron acceptors, Anal. Chem., 65, 242-246
[81] Gulce H., Celebi S.S., Ozyoruk H. and Yildiz A., (1995) Amperometric enzyme electrode for sucrose determination prepared from glucose oxidase and invertase co-immobilised in poly(vinylferrocenium), J. Electroanal. Chem., 397, 217-223
[82] Suzawa T., Ikarlyama Y. and Aizawa M., (1994) Multilabeling of ferrocenes to a glucose oxidase-digoxin conjugate for the development of a homogenous electroenzymatic immunoassay, Anal. Chem., 66, 3889-3894
[83] Amine A., Kauffmann J.M. and Guilbault G.G., (1993) Characterisation of mixed enzyme-mediator-carbon paste electrodes, Anal. Lett., 26, 1281-1299
[84] Bard A.J. and Faulkner L.R., (1980) Electrochemical methods, Fundamentals and applications.
[85] Heider G.H., Sasso S.V., Huang K., Yacynych A.M. and Wick H.J., (1990) Electrochemical platinisation of reticulated vitreous carbon electrodes to increase biosensor response, Anal. Chem., 62, 1106-1110
[86] Wang J., Naser N., Agnes L., Wu H. and Chen L., (1992) Metal-dispersed carbon paste electrodes, Anal Chem, 64, 1285-1288
[87] Chen Q., Wang J., Rayson H., Tian B. and Lin Y., (1993) Sensor array for carbohydrates and amino acids based on electrocatalytic modified electrodes, Anal. Chem., 65, 251-254
[88] Cai X., Kalcher K., Kolbl G., Neuhold C., Diewald W. and Ogorevc B., (1995), Electrocatalytic reduction of hydrogen peroxide on a palladium modified carbon paste electrode, Electroanalysis, 7, 340-345
[89] Cardosi M.F. and Birch S.W., (1993) Screen printed glucose electrodes based on platinised carbon particles and glucose oxidase, Anal. Chim. Acta, 276, 69-74
[90] Cagnini A., Palchetti I., Mascini M. and Turner A.P.F., (1995) Ruthenised screen-printed choline oxidase-based biosensors for measurement of anticholinesterase activity, Mikrochim. Acta, 121, 155-166
[91] Cagnini A., Palchetti I., Lionti I., Mascini M. and Turner A.P.F., (1995) Disposable ruthenised screen printed biosensors for pesticides monitoring, Sensors and Actuators B, 24-25, 85-89
[92] Kroger S. and Turner A.P.F., (1997) Solvent resistant carbon electrodes screen printed onto plastic for use in biosensors, Anal. Chim. Acta, 347, 9-18
[93] Zhang Z., Liu H. and Deng J., (1996) A glucose biosensor based on the immobilisation of glucose oxidase in electropolymerised o-aminophenol film on platinised glassy carbon electrode, Anal. Chem., 68, 1632-1638
[94] Shimazu K., Weisshaar D. and Kuwana T., (1987) Electrochemical dispersion of Pt microparticles on glassy carbon electrodes, J. Electroanal. Chem., 223, 223-234
[95] Tay B., Ang K. and Gunasingham H., (1988) Platinum dispersed Nafion® modified glassy carbon electrode for the determination of hydrogen peroxide in a flow injection system, Analyst, 113, 617-620
[96] Itaya K., Takahashi H. and Uchida I., (1986) Electrodeposition of Pt ultramicroparticles in Nafion films on glassy carbon electrodes, J. Electroanal. Chem., 208, 373-382
[97] Zadeii J.M., Marioli J. and Kuwana T., (1991) Electrochemical detector for liquid chromatographic determination of carbohydrates, Anal. Chem., 63, 649-653
[98] Sakslund H., Wang J. and Hammerich O., (1994) A critical evaluation of a glucose biosensor made by codeposition of palladium and glucose oxidase on glassy carbon, J. Electroanal. Chem., 374, 71-79
[99] Wang J. and Agnes L., (1992) Miniaturised glucose sensors based on the electrochemical codeposition of rhodium and glucose oxidase onto carbon fibre electrodes, Anal. Chem., 64, 456-459
[100] Arbault S., Pantano P., Jankowski J.A., Vuillaume M. and Amatore C., (1995) Monitoring an oxidative stress mechanism at a single human fibroblast, Anal. Chem., 67, 3382-3390
[101] Manowitz P., Stoeker P.W. and Yacynych A.M., (1995) Galactose biosensors using composite polymers to prevent interferences, Biosens. Bioelectron., 10, 359-370
[102] Armstrong R.D. and Newton H.V., (1994) Properties of porous activated carbon electrode materials used as sensors for glucose, J. Electroanal. Chem., 364, 87-94
[103] Galiatsatos C., Ikatiyama Y., Mark J.E. and Heineman W.R., (1989) Immobilisation of glucose oxidase in a poly[vinyl alcohol] matrix on platinised graphite electrodes by gamma-irradiation, Biosens. Bioelectron., 5, 47-61
[104] Bakos I. and Horanyi G., (1995) Influence of deposition potential on the voltammetric behaviour of potentiostatically formed platinised electrodes, J. Electroanal. Chem, 397, 105-110
[105] Beilby A.L., Sasaki T.A. and Stern H.M., (1995) Electrochemical pre-treatment of carbon electrodes as a function of potential, pH and time, Anal. Chem., 67, 976-980
[106] Newman J.D., White S.F., Tothill I.E., and Turner A.P.F., (1995) Catalytic materials, membranes, and fabrication technologies suitable for construction of amperometric biosensors, Anal. Chem. 67, 4594-4599
[107] Li Q.S., Liu B.X., Jun J.T., Zhang Z.K. and Zhong J.J., (1998) Interference free platinum wire glucose biosensors based on covering nonconductive substituted heteropyrrole film, Anal. Lett., 31, 937-948
[108] Geise R.J., Adams J.M., Barone N.J., Yacynych A.M., (1991) Electropolymerised films to prevent interferences and electrode fouling in biosensors, Biosens. Bioelectron., 6, 151-160
[109] Gibson T.D., Parker S.M., Woodward J.R., (1991) Purification and characterisation of diacetyl reductase [acetoin dehydrogenase] from chicken liver and Streptococcus lactis and enzymic determination of biacetyl and diketones, Enzyme. Microb. Technol., 13 171-178
[110] Creighton T.E., Proteins: Structures and molecular properties. (1993), W.H. Freeman & Co., New York, Chapter 7
[111] Vardanis, A., (1985) Ion exchange columns in high performance liquid chromatography of proteins; a simple loading technique that improves resolution, J. Chromatogr., 350, 199-303
[112] Levison, P.R., Badger, S.E., Toome, D.W., Streater, M., Cox, J.A., (1994) Process-scale evaluation of a fast-flowing anion-exchange cellulose, J. Chromatogr. A., 658, 419-428.
[113] Gel filtration theory and practice. Pharmacia Fine Chemical AB, Box 175, S-751 04 Uppsala 1, Sweden
[114] Hayakawa K., Masuko, M., Mineta, M., Yoshikawa, K., Yamauchi, K., Hirano, M., Katsumata, N. and Tanaka, T., (1997) Serum protein determination by high performance gel-permeation chromatography, J. Chromatogr. B, 696, 19-23
[115] Peterson, E.A., Sober, H.A., (1956) J. Amer. Chem. Soc. 78, 751-755
[116] Bradford, M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding, Anal. Biochem., 72, 248-254
[117] Lowry O.H., Rosebrough J., Farr A.L. and Randall R.J., (1951) Protein measurement with the folin phenol reagent, J. Biol. Chem., 193, 265-276
[118] Martin C.R., Rubinstein I. and Bard A.J., (1982) Polymer films on electrodes: 9. Electron and mass transfer in Nafion® films containing Ru(bpy)32+, J. Am. Chem. Soc., 104, 4817-4823
[119] Gorton L., Csoregi E., Dominguez E., Emneus J., Jonsson-Pettersson G., Marko-Varga G. and Persson B., (1991), Selective detection in flow analysis based on the combination of immobilised enzymes and chemically modified electrodes, Anal. Chim. Acta, 250, 203-248
[120] Soda K., (1968) Microdetermination of D-amino acids and D-amino acid oxidase activity with 3-methyl-2-benzothiazolane hydrazone hydrochloride, Anal. Biochem., 25, 228-235
[121] Sawaki, E., Hauser, T.R., Stanley, T.W., Elbert, W., (1961) The 3-methyl-2-benzothiazolone hydrazone test, Anal. Chem, 33, 92-96
[122] Keller P.J, Cohen E. and Neurath H., (1957) Procarboxypeptidase II: Chromatographic isolation, further characterisation and activation, J. Biol. Chem., 224, 905-915
[123] Rohm I., Genrich M., Collier W. and Bilitewski U., (1996) Development of ultraviolet-polymerisable enzyme pastes: Bioprocess applications of screen-printed L-lactate sensors, Analyst, 121, 877-881
[124] Kissinger P.T. and Heineman W.R., (1983) Cyclic voltammetry, Journal of Chemical Education, 702-706
[125] Bartlett P.N., All Z. and Eastwick-Field V., (1992) Electrochemical immobilisation of enzymes, Chem. Soc. Faraday Trans., 88, 2677-2683
[126] Kulys J., Schumann W. and Schmidt H.L., (1992) Carbon-paste electrodes with incorporated lactate oxidase and mediators, Anal. Lett., 1025-1037
[127] Geise R.J., Rao S.Y. and Yacynych A.M., (1993) Electropolymerised 1,3-diaminobenzene for the construction of 1,1’-dimethylferrocene mediated glucose biosensor, Anal. Chim. Acta, 281, 467-473
[128] Amine A., Kauffmann J.M. and Patriarch G.J., (1991) Long-term operational stability of a mixed glucose oxidase-redox mediator-carbon paste electrode, Anal. Lett., 14, 1293-1315
[129] Zen J., Lo C. and Chen P., (1997) An enzymatic clay modified electrode for aerobic glucose monitoring with dopamine as mediator, Anal. Chem., 69, 1669-1673
[130] Pravda M., Adeyoju O., Iwuoha E.I., Vos J.G., Smyth M.R. and Vytras K., (1995) Amperometric glucose biosensors based on Osmium (2+/3+) redox polymer-mediated electron transfer at carbon paste electrodes, Electroanalysis, 7, 619-625
[131] Heller A. and Maidan R., (1992) Elimination of electrooxidisable interferent-produced currents in amperometric biosensors, Anal. Chem., 64, 2889-2896
[132] Engstrom R.C. and Strasser V.A., (1984) Characterisation of electrochemically pre-treated glassy carbon electrodes, Anal. Chem., 56, 136-141
[133] Motta N. and Guadalupe A.R., (1994) Activated carbon paste electrodes for biosensors, Anal. Chem., 66, 566-571
[134] Gorton L., (1985) A carbon electrode sputtered with palladium and gold for the amperometric detection of hydrogen peroxide, Anal. Chim. Acta, 178, 247-253
[135] Anson F.C., Ni C. and Saveant J.M., (1985) Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalysed by cobalt (II) tetrakis(4-N-mehtylpyridyl)porphyrin, J. Am. Chem. Soc., 107, 3442-3450
[136] E. Tsang, (1997), Exorcising mysticism from catalysis, Chem. in Brit., June, 41-43
[137] Lavagnini M.G., Mascone D., Palleschi G., Compagnone D. and Cremisini C., (1993) Amperometric lysine bioprobes analysis in feeds, Talanta, 40, 1301-1306
[138] Shin M. and Kim H., (1996) Electrochemical characterisation of polypyrrole/glucose oxidase biosensor: Part II. Optimal preparation conditions for the biosensor, Biosens. Bioelectron., 11, 171-178
[139] Adeloju S.B., Shaw S.J. and Wallace G.G., (1994) Polypyrrole-based amperometric biosensor for sulphite determination, Electroanalysis, 6, 865-870
[140] Kubiak W.W. and Wang J., (1996) Flow injection analysis as a tool for studying polymer modified electrodes, Anal. Chem., Acta, 329, 181-189
[141] Lowry J.P., McAteer K., El Atrash S.S., Diff D. and O’Neill R.D., (1994) Characterisation of glucose oxidase modified poly(phenylenediamine)-coated electrode in vitro and in vivo: Homogeneous interference by ascorbic acid in hydrogen peroxide detection, Anal. Chem., 66, 1754-1761
[142] Sasso S.V., Pierce R.J., Walla R. and Yacynych A.M., (1990) Electropolymerised 1,2-diaminobenzene as a means to prevent fouling and to stabilise immobilised enzyme in electrochemical biosensors, Anal. Chem., 62, 1111-1117
[143] Wring S.A. and Hart J.P., (1992) Chemically modified , screen-printed carbon electrodes, Analyst, 117, 1281-1285
[144] Nagata R., Yokoyama K., Durliat H., Comtat M., Clark S.A. and Karube I., (1995) An enzyme containing ink for screen printed glucose sensors, Electroanalysis, 7, 1027-1031
[145] Sprules, S.D., Hart J.P., Pittson R. and Wring S.A., (1996) Evaluation of a new disposable screen printed sensor strip for the measurement of NADH and its modification to produce a lactate biosensor employing microlitre volumes, Electroanalysis, 8, 539-543
[146] Christian G.D., Analytical Chemistry. (1994), John Wiley & sons Inc., Chapter 14 |